Skip to main content

Models of FBARs

  • Chapter
  • First Online:
Tuneable Film Bulk Acoustic Wave Resonators

Abstract

In this chapter, the conventional models of acoustic resonators, such as Mason, KLM, and Lakin, are considered as a general background and possibility of their application (with adequate modifications) for modelling of the tuneable FBARs. In ferroelectric-based tuneable FBARs, the basic parameters, stiffness, acoustic velocity, and relative dielectric permittivity of the ferroelectric film are assumed to be DC electric field dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ballato A (2001) Modelling piezoelectric and piezomagnetic devices and structures via equivalent networks. IEEE Trans Ultrason Ferroelectr Freq Control 48:1189–1240

    Article  Google Scholar 

  • Buccella C, De Santis V, Feliziani M, Tognolatti P (2008) Finite element modelling of a thin-film bulk acoustic resonator (FBAR). Int J Comput Math Electr Electron Eng 27:1296–1306

    Article  MATH  Google Scholar 

  • Chase DR et al (2005) Modelling the capacitive nonlinearity in thin film BST varactors. IEEE Trans Micr Theory Tech 53:3215–3220

    Article  Google Scholar 

  • Gevorgian S, Vorobiev A, Deleniv A (2009) Ferroelectrics in microwave devices, circuits and systems. Springer, London

    Book  Google Scholar 

  • Gevorgian S, Vorobiev A, and Lewin T (2006) DC field and temperature dependent acoustic resonances in parallel-plate capacitors based on SrTiO3 and Ba0.25Sr0.75TiO3 films: experiment and modelling. J Appl Phys 99(12): 124112

    Google Scholar 

  • Ivanov SN, Khazanov Ye N (1981) On the residual loss mechanism of acoustic waves in solid at Helium temperature. Radio Eng 26:133–138

    Google Scholar 

  • Kaitila J, Ylilammy M, Ellä J, and Aigner R (2003) Spurious resonance free bulk acoustic wave resonators. In: 2003 IEEE Ultrasonic symposium, pp 84–87

    Google Scholar 

  • Kim Y-D, Sunwoo K-H, Choa S-H, Kim D-H, Song I-S, Yook J-G (2005) Characterization of various shaped 5 GHz TFBARs based on 3D full-wave modelling. In: 13th GAAS symposium, pp 697–700

    Google Scholar 

  • Kokkonen K, Meltaus J, Pensala T, Kaivola M (2010) Characterization of energy trapping in a bulk acoustic wave resonator. Appl Phys Let 97:233507

    Article  Google Scholar 

  • Krimholtz R, Leedom DA, Matthaei GL (1970) New equivalent circuit for elementary piezoelectric transducers. Electron Letters 6:398–399

    Article  Google Scholar 

  • Lakin KM, Kline GR, McCarron KT (1993) High-Q Microwave Acoustic Resonators and Filters. IEEE Tr Microwave Theory Tech 41:2139–2146

    Article  Google Scholar 

  • Marksteiner S, Kaitila J, Fattinger GG, Aigner R (2005) Optimisation of acoustic mirrors for solidly mounted BAW resonators. In: Ultrasonic Symposium, pp 329–332

    Google Scholar 

  • Milsom R F, Löb H-P and Metzmacher C (2004) Simulation of second-order effects in SBAR and FBAR. In: 2nd international symposium on acoustic wave devices for future mobile communication systems, Chiba University, Japan, 3–5 Mar 2004

    Google Scholar 

  • Noeth A, Yamada T, Sherman VO, Muralt P, Tagantsev AK, Setter N (2007) Tuning of direct current bias-induced resonances in micromachined Ba0.3Sr0.7TiO3 thin-film capacitors. J Appl Phys 102:114110

    Article  Google Scholar 

  • Norling M (2010) Piezoelectric and ferroelectric device technologies for microwave oscillators, PhD thesis, Chalmers University, Gothenburg, Sweden

    Google Scholar 

  • Rosenbaum JF (1988) Bulk acoustic wave theory and devices. Artech House, Boston

    MATH  Google Scholar 

  • Ruby R, Larson J, Feng C and Fazzio S (2005) The effect of perimeter geometry on FBAR resonator electrical performance. In: IEEE microwave symposium digest, vol 4, pp 217–220

    Google Scholar 

  • Rupprecht G, Winter WH (1967) Electromechanical behaviour of single crystal strontium titanate. Phys Rev 155:1019–1028

    Article  Google Scholar 

  • Saddik GN, Son J, Stemmer S, York RA (2011) Improvement of barium strontium titanate solidly mounted resonator quality factor by reduction in electrode surface roughness. J Appl Phys 109:091606

    Article  Google Scholar 

  • Southin JEA, Whatmore RW (2004) Finite element modelling of nanostructured piezoelectric resonators (NAPIERs). IEEE Ultrason Ferroelectr Freq Control 51:654–662

    Google Scholar 

  • Tagantsev AK et al (2005) Permittivity, tuneability and losses in ferroelectrics for reconfigurable high frequency electronics. In: Setter N (ed) Electroceramic based MEMs. Springer, London

    Google Scholar 

  • Thalhammer R, Agner R (2005) Energy loss mechanisms in SMR-type BAW devices. In: Digest international microwave symposium, IMS’2005

    Google Scholar 

  • Vorobiev A, Gevorgian S (2012) Microwave characterization of intrinsically tunable FBARs IMS’2012, Digests of International Microwave Symposium, 978-1-4673-1088/12/$31.00

    Google Scholar 

  • Vorobiev A, Gevorgian S, Löffler M, Olsson E (2011) Correlations between microstructure and Q-factor of tuneable thin film bulk acoustic wave resonators. J Appl Phys 110:054102. doi:10.1063/1.3626939

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Spartak Gevorgian .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Gevorgian, S., Tagantsev, A.K., Vorobiev, A. (2013). Models of FBARs. In: Tuneable Film Bulk Acoustic Wave Resonators. Engineering Materials and Processes. Springer, London. https://doi.org/10.1007/978-1-4471-4944-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4944-6_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4943-9

  • Online ISBN: 978-1-4471-4944-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics