Skip to main content

Animal Research in Pediatric Cardiology and Cardiac Surgery

  • Reference work entry
  • First Online:
Pediatric and Congenital Cardiology, Cardiac Surgery and Intensive Care

Abstract

Experimental animal models are often part of the process to develop new methods, devices, or discoveries in modern medical science, and choosing the right model is key to the success of any project. The object of animal models is to reproduce human diseases, metabolically and pathophysiologically, to help provide answers of disease pathogenesis, prevention, and treatment. When carrying out any experimental surgical procedure, appropriate anesthesia and effective analgesia (pain control) are essential to minimize the likelihood of pain or distress in the animals being studied. This chapter aims at providing basic tools for the nonanimal specialist in order to make the right choice, to learn the introductory principles of laboratory animal anesthesia, and to appreciate factors that can affect the data obtained, while understanding the social and ethical issues involved in the use of animals in biomedical research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kilkenny C et al (2010) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 8(6):e1000412

    Article  PubMed  PubMed Central  Google Scholar 

  2. Russell W, Burch R (1959) The principles of humane experimental technique. Methuen, London

    Google Scholar 

  3. National Research Council (2011) Guide for the care and use of laboratory animals: eighth edition. The National Academies Press, Washington DC

    Google Scholar 

  4. Baumans V et al (2006) Report by FELASA Working Group on standardization of enrichment. FELASA Reports Online, Laboratory Animals Ltd. http://www.felasa.eu/document-library/doc_download/70-working-group-report-standardization-of-enrichment. Accessed 15 Dec 2011

  5. Leenaars M et al (2012) A step-by-step guide to systematically identify all relevant animal studies. Lab Anim 46(1):24–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Boot R, Koopman J, Kunstýr I (2003) Microbiological standardization. In: Van Zutphen LFM, Baumans V, Beynen AC (eds) Principles of laboratory animal science. Elsevier, Amsterdam, pp 149–171

    Google Scholar 

  7. European Commission (2010) Sixth Report on the Statistics on the Number of animals used for experimental and other scientific purposes in the member states of the European Union COM(2010)511. http://ec.europa.eu/environment/chemicals/lab_animals/pdf/sec_2010_1107.pdf. p 311

  8. Baumans V (2004) Use of animals in experimental research: an ethical dilemma? Gene Ther 11(Suppl 1):S64–S66

    Article  CAS  PubMed  Google Scholar 

  9. Volkers M et al (2012) Orai1 deficiency leads to heart failure and skeletal myopathy in zebrafish. J Cell Sci 125(2):287–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wood AJ et al (2011) Abnormal vascular development in zebrafish models for fukutin and FKRP deficiency. Hum Mol Genet 20(24):4879–4890

    Article  CAS  PubMed  Google Scholar 

  11. Berger J et al (2011) Evaluation of exon-skipping strategies for Duchenne muscular dystrophy utilizing dystrophin-deficient zebrafish. J Cell Mol Med 15(12):2643–2651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jacoby RO, Fox JG, Davisson M (2002) Biology and diseases of mice. In: Fox JG et al (eds) Laboratory animal medicine. Academic, San Diego, pp 35–120

    Chapter  Google Scholar 

  13. Havenaar R et al (2001) Biology and husbandry of laboratory animals. In: Van Zutphen LFM, Baumans V, Beynen AC (eds) Principles of laboratory animal science. Elsevier, Amsterdam, pp 19–77

    Google Scholar 

  14. Tarnavski O (2009) Mouse surgical models in cardiovascular research. Methods Mol Biol 573:115–137

    Article  PubMed  Google Scholar 

  15. Tarnavski O et al (2004) Mouse cardiac surgery: comprehensive techniques for the generation of mouse models of human diseases and their application for genomic studies. Physiol Genomics 16(3):349–360

    CAS  PubMed  Google Scholar 

  16. Qingbo X (2006) A handbook of mouse models of cardiovascular disease. Wiley, West Sussex

    Google Scholar 

  17. Grazia TJ et al (2010) Acute cardiac allograft rejection by directly cytotoxic CD4 T cells: parallel requirements for Fas and perforin. Transplantation 89(1):33–39

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kimura N et al (2011) Interleukin-16 deficiency suppresses the development of chronic rejection in murine cardiac transplantation model. J Heart Lung Transplant 30(12):1409–1417

    Article  PubMed  Google Scholar 

  19. Yuan X et al (2008) A novel role of CD4 Th17 cells in mediating cardiac allograft rejection and vasculopathy. J Exp Med 205(13):3133–3144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bartelds B et al (2011) Differential responses of the right ventricle to abnormal loading conditions in mice: pressure vs. volume load. Eur J Heart Fail 13(12):1275–1282

    Article  CAS  PubMed  Google Scholar 

  21. Golden HB et al (2012) In utero assessment of cardiovascular function in the embryonic mouse heart using high-resolution ultrasound biomicroscopy. Methods Mol Biol 843:245–263

    Article  CAS  PubMed  Google Scholar 

  22. Respress JL, Wehrens XH (2010) Transthoracic echocardiography in mice. J Vis Exp 39:1738

    Google Scholar 

  23. Ho D et al (2011) Heart rate and electrocardiography monitoring in mice. Curr Protoc Mouse Biol 1:123–139

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kohn DF, Clifford CB (2002) Biology and diseases of rats. In: Fox JG et al (eds) Laboratory animal medicine. Academic, San Diego, pp 121–165

    Chapter  Google Scholar 

  25. Lange V et al (2008) Heterotopic rat heart transplantation (Lewis to F344): early ICAM-1 expression after 8 hours of cold ischemia. J Heart Lung Transplant 27(9):1031–1035

    Article  PubMed  Google Scholar 

  26. Kim SJ et al (2011) Atrial remodeling and the substrate for atrial fibrillation in rat hearts with elevated afterload. Circ Arrhythm Electrophysiol 4(5):761–769

    Article  PubMed  Google Scholar 

  27. Faber MJ et al (2006) Right and left ventricular function after chronic pulmonary artery banding in rats assessed with biventricular pressure-volume loops. Am J Physiol Heart Circ Physiol 291(4):H1580–H1586

    Article  CAS  PubMed  Google Scholar 

  28. Suckow MA et al (2002) Biology and diseases of rabbits. In: Fox JG et al (eds) Laboratory animal medicine. Academic, San Diego, pp 329–364

    Chapter  Google Scholar 

  29. Grannis J (2002) U.S. rabbit industry profile: USDA, APHIS, VS. Centers for Epidemiology and Animal Health, Center for Emerging Issues, Fort Collins

    Google Scholar 

  30. Harcourt-Brown L (2002) Textbook of rabbit medicine. Butterworth Heinemann, Oxford

    Google Scholar 

  31. Gross DR (2012) Animal models in cardiovascular research, 3rd edn. Springer, Lexington, p 431

    Google Scholar 

  32. Brunner M et al (2008) Mechanisms of cardiac arrhythmias and sudden death in transgenic rabbits with long QT syndrome. J Clin Invest 118(6):2246–2259

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Connors RC et al (2007) Postoperative pericardial adhesion prevention using Carbylan-SX in a rabbit model. J Surg Res 140(2):237–242

    Article  CAS  PubMed  Google Scholar 

  34. Zhou J et al (2008) Reduction in postsurgical adhesion formation after cardiac surgery in a rabbit model using N, O-carboxymethyl chitosan to block cell adherence. J Thorac Cardiovasc Surg 135(4):777–783

    Article  CAS  PubMed  Google Scholar 

  35. Milberg P et al (2011) G-CSF therapy reduces myocardial repolarization reserve in the presence of increased arteriogenesis, angiogenesis and connexin 43 expression in an experimental model of pacing-induced heart failure. Basic Res Cardiol 106(6):995–1008

    Article  CAS  PubMed  Google Scholar 

  36. Swindle MM (2007) Swine in the laboratory: surgery, anesthesia, imaging, and experimental techniques, 2nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

  37. Kahn C (ed) (2005) The Merck Veterinary Manual, 9th edn. Merck, Whitehouse Station, pp 897–938

    Google Scholar 

  38. Suematsu Y et al (2005) Three-dimensional echo-guided beating heart surgery without cardiopulmonary bypass: atrial septal defect closure in a swine model. J Thorac Cardiovasc Surg 130(5):1348–1357

    Article  PubMed  Google Scholar 

  39. Amin Z et al (2006) Robotically assisted perventricular closure of perimembranous ventricular septal defects: preliminary results in Yucatan pigs. J Thorac Cardiovasc Surg 131(2):427–432

    Article  PubMed  Google Scholar 

  40. Kajiwara N et al (2011) Training in robotic surgery using the da Vinci(R) surgical system for left pneumonectomy and lymph node dissection in an animal model. Ann Thorac Cardiovasc Surg 17(5):446–453

    Article  PubMed  Google Scholar 

  41. Joyce DL et al (2011) Simulation and skills training in mitral valve surgery. J Thorac Cardiovasc Surg 141(1):107–112

    Article  PubMed  Google Scholar 

  42. Bigelow WG, Lindsay WK et al (1950) Oxygen transport and utilization in dogs at low body temperatures. Am J Physiol 160(1):125–137

    CAS  PubMed  Google Scholar 

  43. Bigelow WG, Lindsay WK, Greenwood WF (1950) Hypothermia; its possible role in cardiac surgery: an investigation of factors governing survival in dogs at low body temperatures. Ann Surg 132(5):849–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Linke A et al (2005) Stem cells in the dog heart are self-renewing, clonogenic, and multipotent and regenerate infarcted myocardium, improving cardiac function. Proc Natl Acad Sci USA 102(25):8966–8971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Trumble DR, Magovern JA (2004) Comparison of dog and pig models for testing substernal cardiac compression devices. ASAIO J 50(3):188–192

    Article  PubMed  Google Scholar 

  46. Dysko RC, Nemzek JA, Levin SI, DeMarco GJ, Moalli MR (2002) Biology and diseases of dogs. In: Fox JG, Anderson LC, Loew FM, Quimby FW (eds) Laboratory animal medicine. Academic, San Diego, pp 395–458

    Chapter  Google Scholar 

  47. Meunier LD (2006) Selection, acclimation, training, and preparation of dogs for the research setting. ILAR J 47(4):326–347

    Article  CAS  PubMed  Google Scholar 

  48. Remme EW et al (2008) Mechanisms of preejection and postejection velocity spikes in left ventricular myocardium: interaction between wall deformation and valve events. Circulation 118(4):373–380

    Article  PubMed  Google Scholar 

  49. Yamanami M et al (2010) Development of a completely autologous valved conduit with the sinus of Valsalva using in-body tissue architecture technology: a pilot study in pulmonary valve replacement in a beagle model. Circulation 122(11 Suppl):S100–S106

    Article  PubMed  Google Scholar 

  50. Hammond RL et al (2012) A wireless and battery-less miniature intracardiac pressure sensor: early implantation studies. ASAIO J 58(1):83–87

    Article  PubMed  Google Scholar 

  51. Rehbinder C et al (2000) FELASA recommendations for the health monitoring of experimental units of calves, sheep and goats Report of the federation of European Laboratory Animal Science Associations (FELASA) Working Group on Animal Health. Lab Anim 34(4):329–350

    Article  CAS  PubMed  Google Scholar 

  52. Granier M et al (2011) Consequences of mitral valve prolapse on chordal tension: ex vivo and in vivo studies in large animal models. J Thorac Cardiovasc Surg 142(6):1585–1587

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bothe W et al (2011) Rigid, complete annuloplasty rings increase anterior mitral leaflet strains in the normal beating ovine heart. Circulation 124(11 Suppl):S81–S96

    Article  PubMed  PubMed Central  Google Scholar 

  54. Carney EL et al (2009) Animal model development for the Penn State pediatric ventricular assist device. Artif Organs 33(11):953–957

    Article  PubMed  PubMed Central  Google Scholar 

  55. Weiss WJ et al (2012) Chronic in vivo testing of the Penn State infant ventricular assist device. ASAIO J 58(1):65–72

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bateson P (2011) Review of Research Using Non-Human Primates. Available from http://www.bbsrc.ac.uk/web/FILES/Reviews/review-research-using-nhps.pdf. Accessed 21 Oct 2011

  57. European Commission and Health & Consumer Protection Directorate-General (2002) The need for non-human primates in Biomedical Research. Statement of the Scientific Steering Committee adopted at its meeting of 4–5 April 2002

    Google Scholar 

  58. Flecknell PA (2009) Laboratory animal anaesthesia, 3rd edn. Academic, London

    Google Scholar 

  59. Tranquilli WJ, Thurmon JC, Grimm KA (2007) Lumb & Jones veterinary anesthesia and analgesia, 4th edn. Blackwell, Iowa

    Google Scholar 

  60. Sonner JM et al (1999) Mouse strain modestly influences minimum alveolar anesthetic concentration and convulsivity of inhaled compounds. Anesth Analg 89(4):1030–1034

    CAS  PubMed  Google Scholar 

  61. Home Office (2000) Guidance on the operation of the Animals (Scientific Procedures) Act 1986. The Stationery Office, London

    Google Scholar 

  62. Flegal MC, Kuhlman SM (2004) Anesthesia monitoring equipment for laboratory animals. Lab Anim (NY) 33(7):31–36

    Article  Google Scholar 

  63. Stokes EL, Flecknell PA, Richardson CA (2009) Reported analgesic and anaesthetic administration to rodents undergoing experimental surgical procedures. Lab Anim 43(2):149–154

    Article  CAS  PubMed  Google Scholar 

  64. National Research Council (2009) Recognition and alleviation of pain in laboratory animals. National Academies Press, Washington, DC

    Google Scholar 

  65. Miller AL, Richardson CA (2011) Rodent analgesia. Vet Clin North Am Exot Anim Pract 14(1):81–92

    Article  PubMed  Google Scholar 

  66. Leach MC et al (2011) Are we looking in the wrong place? Implications for behavioural-based pain assessment in rabbits (Oryctolagus cuniculi) and beyond? PLoS One 6(3):e13347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suzanne Osorio-da Cruz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this entry

Cite this entry

Cruz, S.Od., Flecknell, P., Richardson, C. (2014). Animal Research in Pediatric Cardiology and Cardiac Surgery. In: Da Cruz, E., Ivy, D., Jaggers, J. (eds) Pediatric and Congenital Cardiology, Cardiac Surgery and Intensive Care. Springer, London. https://doi.org/10.1007/978-1-4471-4619-3_65

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4619-3_65

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4618-6

  • Online ISBN: 978-1-4471-4619-3

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics