Skip to main content

Nephrolithiasis and Its Interrelationship with Vitamin D, Parathyroid Hormone, and Calcium

  • Chapter
  • First Online:
Urolithiasis

Abstract

Calcium is a major component of 85 % of renal stones. The incidence of renal stone ­diseases is increasing, possibly consequent to the widespread use of calcium supplementation. A genetic contribution with defects in the regulation of renal calcium excretion has been suggested as a cause of renal stone disease. The parathyroid hormone (PTH) and vitamin D axis plays a key role in the calcium and phosphate homeostasis. The parathyroid gland responds with rapid changes of PTH in response to fluctuations in the extracellular calcium concentration, thereby regulating minute-to-minute normalization of serum ionized calcium, through stimulation of renal tubular calcium reabsorption and bone resorption. On a more chronic basis, PTH also stimulates the conversion of 25-hydroxyvitamin D to 1,25-dihydroxyvitamin D (calcitriol) in the proximal renal tubular cells, thereby stimulating intestinal calcium absorption. Hypersecretion of parathyroid hormone results in hypercalcemia thus predisposing the individual to development of nephrolithiasis.

Vitamin D is recognized as an important hormone in health and disease. There has been an increasing appreciation of the complexity and importance of its regulation, functions, and supplementation. The use of calcium and vitamin D supplementation, though safe, has been shown to be associated with an increase in the incidence of renal lithiasis.

Abnormalities related to vitamin D deficiency and parathyroid hormone disorders in the general population are reported globally with an increased incidence of cardiovascular disease, diabetes, metabolic syndrome, and cancer rates, which is linked to protracted exposure to abnormal internal milieu such as occurs with vitamin D deficiency. This chapter reviews the recent advances and interrelationship in the understanding of calcium, vitamin D, and PTH axis as they affect the process of stone formation in the kidney in health and diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Serio A, Fraioli A. Epidemiology of nephrolithiasis. Nephron. 1999;81 Suppl 1:26–30.

    Article  PubMed  Google Scholar 

  2. Stamatelou KK, Francis ME, Jones CA, Nyberg LM, Curhan GC. Time trends in reported prevalence of kidney stones in the United States: 1976–1994. Kidney Int. 2003;63(5):1817–23.

    Article  PubMed  Google Scholar 

  3. Jackson RD, LaCroix AZ, Gass M, Wallace RB, Robbins J, Lewis CE, et al. Calcium plus vitamin D supplementation and the risk of fractures. N Engl J Med. 2006;354(7):669–83.

    Article  PubMed  CAS  Google Scholar 

  4. Wallace RB, Wactawski-Wende J, O’Sullivan MJ, Larson JC, Cochrane B, Gass M, et al. Urinary tract stone occurrence in the Women’s Health Initiative (WHI) randomized clinical trial of calcium and vitamin D supplements. Am J Clin Nutr. 2011;94(1):270–7.

    Article  PubMed  CAS  Google Scholar 

  5. Frick KK, Bushinsky DA. Molecular mechanisms of primary hypercalciuria. J Am Soc Nephrol. 2003;14(4):1082–95.

    Article  PubMed  Google Scholar 

  6. Cameron MA, Sakhaee K, Moe OW. Nephrolithiasis in children. Pediatr Nephrol. 2005;20(11):1587–92.

    Article  PubMed  Google Scholar 

  7. Moe OW, Bonny O. Genetic hypercalciuria. J Am Soc Nephrol. 2005;16(3):729–45.

    Article  PubMed  Google Scholar 

  8. Potts JT. Parathyroid hormone: past and present. J Endocrinol. 2005;187(3):311–25.

    Article  PubMed  CAS  Google Scholar 

  9. Holick MF. Vitamin D deficiency. N Engl J Med. 2007;357(3):266–81.

    Article  PubMed  CAS  Google Scholar 

  10. Liu PT, Stenger S, Li H, Wenzel L, Tan BH, Krutzik SR, et al. ­Toll-like receptor triggering of a vitamin D-mediated human ­antimicrobial response. Science. 2006;311(5768):1770–3.

    Article  PubMed  CAS  Google Scholar 

  11. Gombart AF, Borregaard N, Koeffler HP. Human cathelicidin antimicrobial peptide (CAMP) gene is a direct target of the ­vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25-dihydroxyvitamin D3. FASEB J. 2005;19(9):1067–77.

    Article  PubMed  CAS  Google Scholar 

  12. Provvedini DM, Tsoukas CD, Deftos LJ, Manolagas SC. 1,25-dihydroxyvitamin D3receptors in human leukocytes. Science. 1983;221(4616):1181–3.

    Article  PubMed  CAS  Google Scholar 

  13. Clark SA, Stumpf WE, Sar M, DeLuca HF, Tanaka Y. Target cells for 1,25 dihydroxyvitamin D3in the pancreas. Cell Tissue Res. 1980;209(3):515–20.

    Article  PubMed  CAS  Google Scholar 

  14. Rook GA, Steele J, Fraher L, Barker S, Karmali R, O’Riordan J, et al. Vitamin D3, gamma interferon, and control of proliferation of Mycobacterium tuberculosis by human monocytes. Immunology. 1986;57(1):159–63.

    PubMed  CAS  Google Scholar 

  15. Wang TT, Nestel FP, Bourdeau V, Nagai Y, Wang Q, Liao J, et al. Cutting edge: 1,25-dihydroxyvitamin D3is a direct inducer of antimicrobial peptide gene expression. J Immunol. 2004;173(5):2909–12.

    PubMed  CAS  Google Scholar 

  16. Weber G, Heilborn JD, Chamorro Jimenez CI, Hammarsjo A, Torma H, Stahle M. Vitamin D induces the antimicrobial protein hCAP18 in human skin. J Invest Dermatol. 2005;124(5):1080–2.

    Article  PubMed  CAS  Google Scholar 

  17. Medzhitov R. Recognition of microorganisms and activation of the immune response. Nature. 2007;449(7164):819–26.

    Article  PubMed  CAS  Google Scholar 

  18. Kreutz M, Andreesen R, Krause SW, Szabo A, Ritz E, Reichel H. 1,25-dihydroxyvitamin D3production and vitamin D3receptor expression are developmentally regulated during differentiation of human monocytes into macrophages. Blood. 1993;82(4):1300–7.

    PubMed  CAS  Google Scholar 

  19. Penna G, Adorini L. 1 Alpha,25-dihydroxyvitamin D3inhibits differentiation, maturation, activation, and survival of dendritic cells leading to impaired alloreactive T cell activation. J Immunol. 2000;164(5):2405–11.

    PubMed  CAS  Google Scholar 

  20. Penna G, Amuchastegui S, Giarratana N, Daniel KC, Vulcano M, Sozzani S, et al. 1,25-Dihydroxyvitamin D3selectively modulates tolerogenic properties in myeloid but not plasmacytoid dendritic cells. J Immunol. 2007;178(1):145–53.

    PubMed  CAS  Google Scholar 

  21. Boonen S, Lips P, Bouillon R, Bischoff-Ferrari HA, Vanderschueren D, Haentjens P. Need for additional calcium to reduce the risk of hip fracture with vitamin d supplementation: evidence from a comparative metaanalysis of randomized controlled trials. J Clin Endocrinol Metab. 2007;92(4):1415–23.

    Article  PubMed  CAS  Google Scholar 

  22. Tang BM, Eslick GD, Nowson C, Smith C, Bensoussan A. Use of calcium or calcium in combination with vitamin D supplementation to prevent fractures and bone loss in people aged 50 years and older: a meta-analysis. Lancet. 2007;370(9588):657–66.

    Article  PubMed  CAS  Google Scholar 

  23. Fraser WD. Hyperparathyroidism. Lancet. 2009;374(9684):145–58.

    Article  PubMed  CAS  Google Scholar 

  24. Holick MF, MacLaughlin JA, Clark MB, Holick SA, Potts Jr JT, Anderson RR, et al. Photosynthesis of previtamin D3in human skin and the physiologic consequences. Science. 1980;210(4466):203–5.

    Article  PubMed  CAS  Google Scholar 

  25. Holick MF, Uskokovic M, Henley JW, MacLaughlin J, Holick SA, Potts Jr JT. The photoproduction of 1 alpha,25-dihydroxyvitamin D3in skin: an approach to the therapy of vitamin-D-resistant ­syndromes. N Engl J Med. 1980;303(7):349–54.

    Article  PubMed  CAS  Google Scholar 

  26. Omdahl JL, Bobrovnikova EA, Choe S, Dwivedi PP, May BK. Overview of regulatory cytochrome P450 enzymes of the vitamin D pathway. Steroids. 2001;66(3–5):381–9.

    Article  PubMed  CAS  Google Scholar 

  27. Hoenderop JG, Nilius B, Bindels RJ. Epithelial calcium channels: from identification to function and regulation. Pflugers Arch. 2003;446(3):304–8.

    PubMed  CAS  Google Scholar 

  28. Hoenderop JG, van Leeuwen JP, van der Eerden BC, Kersten FF, van der Kemp AW, Merillat AM, et al. Renal Ca2+wasting, hyperabsorption, and reduced bone thickness in mice lacking TRPV5. J Clin Invest. 2003;112(12):1906–14.

    PubMed  CAS  Google Scholar 

  29. Perwad F, Azam N, Zhang MY, Yamashita T, Tenenhouse HS, Portale AA. Dietary and serum phosphorus regulate fibroblast growth factor 23 expression and 1,25-dihydroxyvitamin D metabolism in mice. Endocrinology. 2005;146(12):5358–64.

    Article  PubMed  CAS  Google Scholar 

  30. Shimada T, Hasegawa H, Yamazaki Y, Muto T, Hino R, Takeuchi Y, et al. FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis. J Bone Miner Res. 2004;19(3):429–35.

    Article  PubMed  CAS  Google Scholar 

  31. Hewison M, Burke F, Evans KN, Lammas DA, Sansom DM, Liu P, et al. Extra-renal 25-hydroxyvitamin D3-1alpha-hydroxylase in human health and disease. J Steroid Biochem Mol Biol. 2007;103(3–5):316–21.

    Article  PubMed  CAS  Google Scholar 

  32. Zierold C, Darwish HM, DeLuca HF. Two vitamin D response elements function in the rat 1,25-dihydroxyvitamin D 24-hydroxylase promoter. J Biol Chem. 1995;270(4):1675–8.

    Article  PubMed  CAS  Google Scholar 

  33. Cooke NE, Haddad JG. Vitamin D binding protein (Gc-globulin). Endocr Rev. 1989;10(3):294–307.

    Article  PubMed  CAS  Google Scholar 

  34. Christakos S, Dhawan P, Liu Y, Peng X, Porta A. New insights into the mechanisms of vitamin D action. J Cell Biochem. 2003;88(4):695–705.

    Article  PubMed  CAS  Google Scholar 

  35. DeLuca HF. Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr. 2004;80(6 Suppl):1689S–96.

    PubMed  CAS  Google Scholar 

  36. Rachez C, Freedman LP. Mechanisms of gene regulation by vitamin D(3) receptor: a network of coactivator interactions. Gene. 2000;246(1–2):9–21.

    Article  PubMed  CAS  Google Scholar 

  37. Sutton AL, MacDonald PN. Vitamin D: more than a “bone-a-fide” hormone. Mol Endocrinol. 2003;17(5):777–91.

    Article  PubMed  CAS  Google Scholar 

  38. Li YC, Pirro AE, Amling M, Delling G, Baron R, Bronson R, et al. Targeted ablation of the vitamin D receptor: an animal model of vitamin D-dependent rickets type II with alopecia. Proc Natl Acad Sci USA. 1997;94(18):9831–5.

    Article  PubMed  CAS  Google Scholar 

  39. Sneddon WB, Barry EL, Coutermarsh BA, Gesek FA, Liu F, Friedman PA. Regulation of renal parathyroid hormone receptor expression by 1, 25-dihydroxyvitamin D3and retinoic acid. Cell Physiol Biochem. 1998;8(5):261–77.

    Article  PubMed  CAS  Google Scholar 

  40. Lambers TT, Weidema AF, Nilius B, Hoenderop JG, Bindels RJ. Regulation of the mouse epithelial Ca2(+) channel TRPV6 by the Ca(2+)-sensor calmodulin. J Biol Chem. 2004;279(28):28855–61.

    Article  PubMed  CAS  Google Scholar 

  41. Demay MB, Kiernan MS, DeLuca HF, Kronenberg HM. Sequences in the human parathyroid hormone gene that bind the 1,25-dihydroxyvitamin D3receptor and mediate transcriptional repression in response to 1,25-dihydroxyvitamin D3. Proc Natl Acad Sci USA. 1992;89(17):8097–101.

    Article  PubMed  CAS  Google Scholar 

  42. Brown AJ, Zhong M, Ritter C, Brown EM, Slatopolsky E. Loss of calcium responsiveness in cultured bovine parathyroid cells is associated with decreased calcium receptor expression. Biochem Biophys Res Commun. 1995;212(3):861–7.

    Article  PubMed  CAS  Google Scholar 

  43. Brown AJ, Zhong M, Finch J, Ritter C, Slatopolsky E. The roles of calcium and 1,25-dihydroxyvitamin D3in the regulation of vitamin D receptor expression by rat parathyroid glands. Endocrinology. 1995;136(4):1419–25.

    Article  PubMed  CAS  Google Scholar 

  44. Hauache OM. Extracellular calcium-sensing receptor: structural and functional features and association with diseases. Braz J Med Biol Res. 2001;34(5):577–84.

    Article  PubMed  CAS  Google Scholar 

  45. Larsson T, Marsell R, Schipani E, Ohlsson C, Ljunggren O, Tenenhouse HS, et al. Transgenic mice expressing fibroblast growth factor 23 under the control of the alpha1(I) collagen promoter exhibit growth retardation, osteomalacia, and disturbed phosphate homeostasis. Endocrinology. 2004;145(7):3087–94.

    Article  PubMed  CAS  Google Scholar 

  46. Burnett SM, Gunawardene SC, Bringhurst FR, Juppner H, Lee H, Finkelstein JS. Regulation of C-terminal and intact FGF-23 by dietary phosphate in men and women. J Bone Miner Res. 2006;21(8):1187–96.

    Article  PubMed  CAS  Google Scholar 

  47. Brown EM, MacLeod RJ. Extracellular calcium sensing and extracellular calcium signaling. Physiol Rev. 2001;81(1):239–97.

    PubMed  CAS  Google Scholar 

  48. Brown EM. Mechanisms underlying the regulation of parathyroid hormone secretion in vivo and in vitro. Curr Opin Nephrol Hypertens. 1993;2(4):541–51.

    Article  PubMed  CAS  Google Scholar 

  49. Brown EM, Gamba G, Riccardi D, Lombardi M, Butters R, Kifor O, et al. Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. Nature. 1993;366(6455):575–80.

    Article  PubMed  CAS  Google Scholar 

  50. Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol. 2003;4(7):517–29.

    Article  PubMed  CAS  Google Scholar 

  51. Brown EM. Extracellular Ca2+sensing, regulation of parathyroid cell function, and role of Ca2+and other ions as extracellular (first) messengers. Physiol Rev. 1991;71(2):371–411.

    PubMed  CAS  Google Scholar 

  52. Ng RC, Rouse D, Suki WN. Calcium transport in the rabbit superficial proximal convoluted tubule. J Clin Invest. 1984;74(3):834–42.

    Article  PubMed  CAS  Google Scholar 

  53. Bomsztyk K, George JP, Wright FS. Effects of luminal fluid anions on calcium transport by proximal tubule. Am J Physiol. 1984;246(5 Pt 2):F600–8.

    PubMed  CAS  Google Scholar 

  54. Ullrich KJ, Rumrich G, Kloss S. Active Ca2+reabsorption in the proximal tubule of the rat kidney. Dependence on sodium- and ­buffer transport. Pflugers Arch. 1976;364(3):223–8.

    Article  PubMed  CAS  Google Scholar 

  55. Bourdeau JE, Burg MB. Effect of PTH on calcium transport across the cortical thick ascending limb of Henle’s loop. Am J Physiol. 1980;239(2):F121–6.

    PubMed  CAS  Google Scholar 

  56. Suki WN, Rouse D. Hormonal regulation of calcium transport in thick ascending limb renal tubules. Am J Physiol. 1981;241(2):F171–4.

    PubMed  CAS  Google Scholar 

  57. Silver J, Elstein D. Regulation of 25-OH-D3 1 alpha-hydroxylase and 24-hydroxylase activities along the rat nephron and in isolated kidney cells. Miner Electrolyte Metab. 1985;11(3):173–7.

    PubMed  CAS  Google Scholar 

  58. Okazaki T, Igarashi T, Kronenberg HM. 5’-flanking region of the parathyroid hormone gene mediates negative regulation by 1,25-(OH)2 vitamin D3. J Biol Chem. 1988;263(5):2203–8.

    PubMed  CAS  Google Scholar 

  59. Ba J, Friedman PA. Calcium-sensing receptor regulation of renal mineral ion transport. Cell Calcium. 2004;35(3):229–37.

    Article  PubMed  CAS  Google Scholar 

  60. Maiti A, Beckman MJ. Extracellular calcium is a direct effecter of VDR levels in proximal tubule epithelial cells that counter-balances effects of PTH on renal Vitamin D metabolism. J Steroid Biochem Mol Biol. 2007;103(3–5):504–8.

    Article  PubMed  CAS  Google Scholar 

  61. Hebert SC, Brown EM, Harris HW. Role of the Ca(2+)-sensing receptor in divalent mineral ion homeostasis. J Exp Biol. 1997;200(Pt 2):295–302.

    PubMed  CAS  Google Scholar 

  62. Thebault S, Hoenderop JG, Bindels RJ. Epithelial Ca2+and Mg2+channels in kidney disease. Adv Chronic Kidney Dis. 2006;13(2):110–7.

    Article  PubMed  Google Scholar 

  63. Hoenderop JG, van der Kemp AW, Hartog A, van Os CH, Willems PH, Bindels RJ. The epithelial calcium channel, ECaC, is activated by hyperpolarization and regulated by cytosolic calcium. Biochem Biophys Res Commun. 1999;261(2):488–92.

    Article  PubMed  CAS  Google Scholar 

  64. Hoenderop JG, De Pont JJ, Bindels RJ, Willems PH. Hormone-stimulated Ca2+reabsorption in rabbit kidney cortical collecting system is cAMP-independent and involves a phorbol ester-­insensitive PKC isotype. Kidney Int. 1999;55(1):225–33.

    Article  PubMed  CAS  Google Scholar 

  65. Wasserman RH, Fullmer CS. Vitamin D and intestinal calcium transport: facts, speculations and hypotheses. J Nutr. 1995;125(7 Suppl):1971S–9.

    PubMed  CAS  Google Scholar 

  66. Pannabecker TL, Chandler JS, Wasserman RH. Vitamin-­D-dependent transcriptional regulation of the intestinal plasma membrane calcium pump. Biochem Biophys Res Commun. 1995;213(2):499–505.

    Article  PubMed  CAS  Google Scholar 

  67. Peng JB, Chen XZ, Berger UV, Vassilev PM, Tsukaguchi H, Brown EM, et al. Molecular cloning and characterization of a channel-like transporter mediating intestinal calcium absorption. J Biol Chem. 1999;274(32):22739–46.

    Article  PubMed  CAS  Google Scholar 

  68. Raisz LG, Trummel CL, Holick MF, DeLuca HF. 1,25-dihydroxycholecalciferol: a potent stimulator of bone resorption in tissue culture. Science. 1972;175(23):768–9.

    Article  PubMed  CAS  Google Scholar 

  69. Scheinman SJ. Nephrolithiasis. Semin Nephrol. 1999;19(4):381–8.

    PubMed  CAS  Google Scholar 

  70. Schwarz RD, Dwyer NT. Pediatric kidney stones: long-term ­outcomes. Urology. 2006;67(4):812–6.

    Article  PubMed  Google Scholar 

  71. Resnick M, Pridgen DB, Goodman HO. Genetic predisposition to formation of calcium oxalate renal calculi. N Engl J Med. 1968;278(24):1313–8.

    Article  PubMed  CAS  Google Scholar 

  72. Henneman PH, Benedict PH, Forbes AP, Dudley HR. Idiopathic hypercaicuria. N Engl J Med. 1958;259(17):802–7.

    Article  PubMed  CAS  Google Scholar 

  73. Coe FL, Parks JH, Moore ES. Familial idiopathic hypercalciuria. N Engl J Med. 1979;300(7):337–40.

    Article  PubMed  CAS  Google Scholar 

  74. Bushinsky DA. Recurrent hypercalciuric nephrolithiasis – does diet help? N Engl J Med. 2002;346(2):124–5.

    Article  PubMed  Google Scholar 

  75. Maierhofer WJ, Gray RW, Cheung HS, Lemann Jr J. Bone resorption stimulated by elevated serum 1,25-(OH)2-vitamin D concentrations in healthy men. Kidney Int. 1983;24(4):555–60.

    Article  PubMed  CAS  Google Scholar 

  76. Adams ND, Gray RW, Lemann Jr J, Cheung HS. Effects of calcitriol administration on calcium metabolism healthy men. Kidney Int. 1982;21(1):90–7.

    Article  PubMed  CAS  Google Scholar 

  77. Bushinsky DA, Frick KK, Nehrke K. Genetic hypercalciuric stone-forming rats. Curr Opin Nephrol Hypertens. 2006;15(4):403–18.

    Article  PubMed  CAS  Google Scholar 

  78. Bushinsky DA, Asplin JR, Grynpas MD, Evan AP, Parker WR, Alexander KM, et al. Calcium oxalate stone formation in genetic hypercalciuric stone-forming rats. Kidney Int. 2002;61(3):975–87.

    Article  PubMed  CAS  Google Scholar 

  79. Li XQ, Tembe V, Horwitz GM, Bushinsky DA, Favus MJ. Increased intestinal vitamin D receptor in genetic hypercalciuric rats. A cause of intestinal calcium hyperabsorption. J Clin Invest. 1993;91(2):661–7.

    Article  PubMed  CAS  Google Scholar 

  80. Yao J, Kathpalia P, Bushinsky DA, Favus MJ. Hyperresponsiveness of vitamin D receptor gene expression to 1,25-dihydroxyvitamin D3. A new characteristic of genetic hypercalciuric stone-forming rats. J Clin Invest. 1998;101(10):2223–32.

    Article  PubMed  CAS  Google Scholar 

  81. Melton 3rd LJ. The epidemiology of primary hyperparathyroidism in North America. J Bone Miner Res. 2002;17 Suppl 2:N12–7.

    PubMed  Google Scholar 

  82. Phitayakorn R, McHenry CR. Incidence and location of ectopic abnormal parathyroid glands. Am J Surg. 2006;191(3):418–23.

    Article  PubMed  Google Scholar 

  83. Wermers RA, Khosla S, Atkinson EJ, Hodgson SF, O’Fallon WM, Melton 3rd LJ. The rise and fall of primary hyperparathyroidism: a population-based study in Rochester, Minnesota, 1965–1992. Ann Intern Med. 1997;126(6):433–40.

    PubMed  CAS  Google Scholar 

  84. Adami S, Marcocci C, Gatti D. Epidemiology of primary hyperparathyroidism in Europe. J Bone Miner Res. 2002;17 Suppl 2:N18–23.

    PubMed  Google Scholar 

  85. Mundy GR, Cove DH, Fisken R. Primary hyperparathyroidism: changes in the pattern of clinical presentation. Lancet. 1980;1(8182):1317–20.

    Article  PubMed  CAS  Google Scholar 

  86. Thakker RV. Diseases associated with the extracellular calcium-sensing receptor. Cell Calcium. 2004;35(3):275–82.

    Article  PubMed  CAS  Google Scholar 

  87. Khosla S, Ebeling PR, Firek AF, Burritt MM, Kao PC, Heath 3rd H. Calcium infusion suggests a “set-point” abnormality of parathyroid gland function in familial benign hypercalcemia and more complex disturbances in primary hyperparathyroidism. J Clin Endocrinol Metab. 1993;76(3):715–20.

    Article  PubMed  CAS  Google Scholar 

  88. Farnebo F, Enberg U, Grimelius L, Backdahl M, Schalling M, Larsson C, et al. Tumor-specific decreased expression of calcium sensing receptor messenger ribonucleic acid in sporadic primary hyperparathyroidism. J Clin Endocrinol Metab. 1997;82(10):3481–6.

    Article  PubMed  CAS  Google Scholar 

  89. Garner SC, Hinson TK, McCarty KS, Leight M, Leight Jr GS, Quarles LD. Quantitative analysis of the calcium-sensing receptor messenger RNA in parathyroid adenomas. Surgery. 1997;122(6):1166–75.

    Article  PubMed  CAS  Google Scholar 

  90. Silverberg SJ, Shane E, Jacobs TP, Siris E, Bilezikian JP. A 10-year prospective study of primary hyperparathyroidism with or without parathyroid surgery. N Engl J Med. 1999;341(17):1249–55.

    Article  PubMed  CAS  Google Scholar 

  91. Mazzaglia PJ, Berber E, Kovach A, Milas M, Esselstyn C, Siperstein AE. The changing presentation of hyperparathyroidism over 3 decades. Arch Surg. 2008;143(3):260–6.

    Article  PubMed  Google Scholar 

  92. Mansoor S, Habib A, Ghani F, Fatmi Z, Badruddin S, Siddiqui I, et al. Prevalence and significance of vitamin D deficiency and insufficiency among apparently healthy adults. Clin Biochem. 2010;43(18):1431–5.

    Article  PubMed  CAS  Google Scholar 

  93. Rao DS, Agarwal G, Talpos GB, Phillips ER, Bandeira F, Mishra SK, et al. Role of vitamin D and calcium nutrition in disease expression and parathyroid tumor growth in primary hyperparathyroidism: a global perspective. J Bone Miner Res. 2002;17 Suppl 2:N75–80.

    PubMed  CAS  Google Scholar 

  94. Silverberg SJ, Shane E, Dempster DW, Bilezikian JP. The effects of vitamin D insufficiency in patients with primary hyperparathyroidism. Am J Med. 1999;107(6):561–7.

    Article  PubMed  CAS  Google Scholar 

  95. Jesudason D, Need AG, Horowitz M, O’Loughlin PD, Morris HA, Nordin BE. Relationship between serum 25-hydroxyvitamin D and bone resorption markers in vitamin D insufficiency. Bone. 2002;31(5):626–30.

    Article  PubMed  CAS  Google Scholar 

  96. Vieth R, Ladak Y, Walfish PG. Age-related changes in the 25-hydroxyvitamin D versus parathyroid hormone relationship suggest a different reason why older adults require more vitamin D. J Clin Endocrinol Metab. 2003;88(1):185–91.

    Article  PubMed  CAS  Google Scholar 

  97. Malabanan A, Veronikis IE, Holick MF. Redefining vitamin D insufficiency. Lancet. 1998;351(9105):805–6.

    Article  PubMed  CAS  Google Scholar 

  98. Grzela T, Chudzinski W, Lasiecka Z, Niderla J, Wilczynski G, Gornicka B, et al. The calcium-sensing receptor and vitamin D receptor expression in tertiary hyperparathyroidism. Int J Mol Med. 2006;17(5):779–83.

    PubMed  CAS  Google Scholar 

  99. Kebebew E, Duh QY, Clark OH. Tertiary hyperparathyroidism: histologic patterns of disease and results of parathyroidectomy. Arch Surg. 2004;139(9):974–7.

    Article  PubMed  Google Scholar 

  100. Knudtzon J, Halse J, Monn E, Nesland A, Nordal KP, Paus P, et al. Autonomous hyperparathyroidism in X-linked hypophosphataemia. Clin Endocrinol (Oxf). 1995;42(2):199–203.

    Article  CAS  Google Scholar 

  101. Rivkees SA, El-Hajj-Fuleihan G, Brown EM, Crawford JD. Tertiary hyperparathyroidism during high phosphate therapy of familial hypophosphatemic rickets. J Clin Endocrinol Metab. 1992;75(6):1514–8.

    Article  PubMed  CAS  Google Scholar 

  102. Huang QL, Feig DS, Blackstein ME. Development of tertiary hyperparathyroidism after phosphate supplementation in oncogenic osteomalacia. J Endocrinol Invest. 2000;23(4):263–7.

    PubMed  CAS  Google Scholar 

  103. Lips P. Relative value of 25(OH)D and 1,25(OH)2D measurements. J Bone Miner Res. 2007;22(11):1668–71.

    Article  PubMed  CAS  Google Scholar 

  104. Barbour GL, Coburn JW, Slatopolsky E, Norman AW, Horst RL. Hypercalcemia in an anephric patient with sarcoidosis: evidence for extrarenal generation of 1,25-dihydroxyvitamin D. N Engl J Med. 1981;305(8):440–3.

    Article  PubMed  CAS  Google Scholar 

  105. Davies M, Mawer EB, Hayes ME, Lumb GA. Abnormal vitamin D metabolism in Hodgkin’s lymphoma. Lancet. 1985;1(8439):1186–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aysha Habib Khan BBS, FCPS (chemical pathology) .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Khan, A.H. (2012). Nephrolithiasis and Its Interrelationship with Vitamin D, Parathyroid Hormone, and Calcium. In: Talati, J., Tiselius, HG., Albala, D., YE, Z. (eds) Urolithiasis. Springer, London. https://doi.org/10.1007/978-1-4471-4387-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4387-1_24

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4383-3

  • Online ISBN: 978-1-4471-4387-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics