Skip to main content

Opportunities for New Photodynamic Molecular Beacon Designs

  • Chapter
  • First Online:
Engineering in Translational Medicine
  • 2642 Accesses

Abstract

The ability to provide biomolecular recognition with a fluorescence readout has made molecular beacons useful in various medical and biological applications. Combined with photodynamic therapy photosensitizers, photodynamic molecular beacons hold potential as new tools for not only disease diagnosis, but therapy as well. In this chapter, we focus on classic and emerging nucleic acid-based molecular beacon design considerations. Designs based on the original stem-and-loop structure have been expanded, and these concepts have direct applicability for conversion into photodynamic molecular beacons.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14:303–308

    Google Scholar 

  2. Li Y, Zhou X, Ye D (2008) Molecular beacons: an optimal multifunctional biological probe. Biochem Biophys Res Commun 373:457–461

    Google Scholar 

  3. Marras SAE, Kramer FR, Tyagi S (2002) Efficiencies of fluorescence resonance energy transfer and contact-mediated quenching in oligonucleotide probes. Nucl Acids Res 30:e122–e122

    Google Scholar 

  4. Cardullo RA, Agrawal S, Flores C, Zamecnik PC, Wolf DE (1988) Detection of nucleic acid hybridization by nonradiative fluorescence resonance energy transfer. PNAS 85:8790–8794

    Google Scholar 

  5. Morrison LE, Halder TC, Stols LM (1989) Solution-phase detection of polynucleotides using interacting fluorescent labels and competitive hybridization. Anal Biochem 183:231–244

    Google Scholar 

  6. Fuchs J, Podda M (2004) Encyclopedia of medical genomics and proteomics-2 Volume Set. CRC Press

    Google Scholar 

  7. Marras SAE, Russell Kramer F, Tyagi S (1999) Multiplex detection of single-nucleotide variations using molecular beacons. Genet Anal Biomol Eng 14:151–156

    Google Scholar 

  8. Bonnet G, Tyagi S, Libchaber A, Kramer FR (1999) Thermodynamic basis of the enhanced specificity of structured DNA probes. PNAS 96:6171–6176

    Google Scholar 

  9. Tsourkas A, Behlke MA, Rose SD, Bao G (2003) Hybridization kinetics and thermodynamics of molecular beacons. Nucl Acids Res 31:1319–1330

    Google Scholar 

  10. Marras SAE (2006) Selection of fluorophore and quencher pairs for fluorescent nucleic acid hybridization probes. Methods Mol Biol 335:3–16

    Google Scholar 

  11. Wang K, Tang Z, Yang CJ et al (2009) Molecular engineering of DNA: molecular beacons. Angewandte Chemie Int Ed 48:856–870

    Google Scholar 

  12. Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer

    Google Scholar 

  13. Tyagi S, Bratu DP, Kramer FR (1998) Multicolor molecular beacons for allele discrimination. Nat Biotechnol 16:49–53

    Google Scholar 

  14. Förster T (1948) Zwischenmolekulare energiewanderung und fluoreszenz. Ann Phys 437:55–75

    Google Scholar 

  15. Stryer L (1978) Fluorescence energy transfer as a spectroscopic ruler. Ann Rev Biochem 47:819–846

    Google Scholar 

  16. Haugland RP, Yguerabide J, Stryer L (1969) Dependence of the kinetics of singlet energy transfer on spectral overlap. PNAS 63:23–30

    Google Scholar 

  17. Bernacchi S, Mély Y (2001) Exciton interaction in molecular beacons: a sensitive sensor for short range modifications of the nucleic acid structure. Nucleic Acids Res 29:e62

    Google Scholar 

  18. Lovell JF, Chen J, Jarvi MT, Cao W-G, Allen AD, Liu Y, Tidwell TT, Wilson BC, Zheng G (2009) FRET quenching of photosensitizer singlet oxygen generation. J Phys Chem B 113:3203–3211

    Google Scholar 

  19. Wu J, Zou Y, Li C, Sicking W, Piantanida I, Yi T, Schmuck C (2012) A molecular peptide beacon for the ratiometric sensing of nucleic acids. J Am Chem Soc 134:1958–1961

    Google Scholar 

  20. Said Hassane F, Saleh AF, Abes R, Gait MJ, Lebleu B (2010) Cell penetrating peptides: overview and applications to the delivery of oligonucleotides. Cell Mol Life Sci 67:715–726

    Google Scholar 

  21. Chen J, Stefflova K, Niedre MJ, Wilson BC, Chance B, Glickson JD, Zheng G (2004) Protease-triggered photosensitizing beacon based on singlet oxygen quenching and activation. J Am Chem Soc 126:11450–11451

    Google Scholar 

  22. Lovell JF, Liu TWB, Chen J, Zheng G (2010) Activatable photosensitizers for imaging and therapy. Chem Rev 110:2839–2857

    Google Scholar 

  23. Stefflova K, Chen J, Zheng G (2007) Killer beacons for combined cancer imaging and therapy. Curr Med Chem 14:2110–2125

    Google Scholar 

  24. Wilson BC, Patterson MS (2008) The physics, biophysics and technology of photodynamic therapy. Phys Med Biol 53:R61–R109

    Google Scholar 

  25. Zheng G, Chen J, Stefflova K, Jarvi M, Li H, Wilson BC (2007) Photodynamic molecular beacon as an activatable photosensitizer based on protease-controlled singlet oxygen quenching and activation. PNAS 104:8989–8994

    Google Scholar 

  26. Liu TWB, Chen J, Zheng G (2011) Peptide-based molecular beacons for cancer imaging and therapy. Amino Acids 41:1123–1134

    Google Scholar 

  27. Cló E, Snyder JW, Voigt NV, Ogilby PR, Gothelf KV (2006) DNA-programmed control of photosensitized singlet oxygen production. J Am Chem Soc 128:4200–4201

    Google Scholar 

  28. Chen J, Lovell JF, Lo P-C, Stefflova K, Niedre M, Wilson BC, Zheng G (2008) A tumor mRNA-triggered photodynamic molecular beacon based on oligonucleotide hairpin control of singlet oxygen production. Photochem Photobiol Sci 7:775–781

    Google Scholar 

  29. Tørring T, Toftegaard R, Arnbjerg J, Ogilby PR, Gothelf KV (2010) Reversible pH-regulated control of photosensitized singlet oxygen production using a DNA i-Motif. Angewandte Chemie Int Ed 49:7923–7925

    Google Scholar 

  30. Lo P-C, Chen J, Stefflova K, Warren MS, Navab R, Bandarchi B, Mullins S, Tsao M, Cheng JD, Zheng G (2009) Photodynamic molecular beacon triggered by fibroblast activation protein on cancer-associated fibroblasts for diagnosis and treatment of epithelial cancers. J Med Chem 52:358–368

    Google Scholar 

  31. Jin CS, Lovell JF, Chen J, Zheng G (2013) Ablation of hypoxic tumors with dose-equivalent photothermal, but not photodynamic, therapy using a nanostructured porphyrin assembly. ACS Nano 7:2541–2550. doi: 10.1021/nn3058642

    Google Scholar 

  32. Zhang Y (2012) Porphyrins as theranostic agents from prehistoric to modern times. Theranostics 2:905–915

    Google Scholar 

  33. Chen J, Jarvi M, Lo P-C, Stefflova K, Wilson BC, Zheng G (2007) Using the singlet oxygen scavenging property of carotenoid in photodynamic molecular beacons to minimize photodamage to non-targeted cells. Photochem Photobiol Sci 6:1311–1317

    Google Scholar 

  34. Liu TW, Akens MK, Chen J, Wise-Milestone L, Wilson BC, Zheng G (2011) Imaging of specific activation of photodynamic molecular beacons in breast cancer vertebral metastases. Bioconjugate Chem 22:1021–1030

    Google Scholar 

  35. Stefflova K, Chen J, Li H, Zheng G (2006) Targeted photodynamic therapy agent with a built-in apoptosis sensor for in vivo near-infrared imaging of tumor apoptosis triggered by its photosensitization in situ. Mol Imaging 5:520–532

    Google Scholar 

  36. Lovell JF, Chan MW, Qi Q, Chen J, Zheng G (2011) Porphyrin FRET acceptors for apoptosis induction and monitoring. J Am Chem Soc 133:18580–18582

    Google Scholar 

  37. Zhu Z, Tang Z, Phillips JA, Yang R, Wang H, Tan W (2008) Regulation of singlet oxygen generation using single-walled carbon nanotubes. J Am Chem Soc 130:10856–10857

    Google Scholar 

  38. Zhu Z, Yang R, You M, Zhang X, Wu Y, Tan W (2010) Single-walled carbon nanotube as an effective quencher. Anal Bioanal Chem 396:73–83

    Google Scholar 

  39. Kam NWS, Liu Z, Dai H (2006) Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angewandte Chemie Int Ed 45:577–581

    Google Scholar 

  40. Liu Y, Chen W, Wang S, Joly AG (2008) Investigation of water-soluble x-ray luminescence nanoparticles for photodynamic activation. Appl Phys Lett 92:043901–043901–3

    Google Scholar 

  41. SantaLucia J (1998) A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. PNAS 95:1460–1465

    Google Scholar 

  42. Yakovchuk P, Protozanova E, Frank-Kamenetskii MD (2006) Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acids Res 34:564–574

    Google Scholar 

  43. Vologodskii AV, Amirikyan BR, Lyubchenko YL, Frank-Kamenetskii MD (1984) Allowance for heterogeneous stacking in the DNA helix-coil transition theory. J Biomol Struct Dyn 2:131–148

    Google Scholar 

  44. Breslauer KJ, Frank R, Blöcker H, Marky LA (1986) Predicting DNA duplex stability from the base sequence. PNAS 83:3746–3750

    Google Scholar 

  45. Tan Z-J, Chen S-J (2008) Salt dependence of nucleic acid hairpin stability. Biophys J 95:738–752

    Google Scholar 

  46. Tan Z-J, Chen S-J (2006) Nucleic acid helix stability: effects of salt concentration, cation valence and size, and chain length. Biophys J 90:1175–1190

    Google Scholar 

  47. Tsourkas A, Bao G (2003) Shedding light on health and disease using molecular beacons. Brief Funct Genomic Proteomic 1:372–384

    Google Scholar 

  48. Nesterova IV, Verdree VT, Pakhomov S, Strickler KL, Allen MW, Hammer RP, Soper SA (2007) Metallo-phthalocyanine near-IR fluorophores: oligonucleotide conjugates and their applications in PCR assays. Bioconj Chem 18:2159–2168

    Google Scholar 

  49. Seidel CAM, Schulz A, Sauer MHM (1996) Nucleobase-specific quenching of fluorescent dyes. 1. nucleobase one-electron redox potentials and their correlation with static and dynamic quenching efficiencies. J Phys Chem 100:5541–5553

    Google Scholar 

  50. Owczarzy R, You Y, Moreira BG, Manthey JA, Huang L, Behlke MA, Walder JA (2004) Effects of sodium ions on DNA duplex oligomers: improved predictions of melting temperatures. Biochemistry 43:3537–3554

    Google Scholar 

  51. Dave N, Liu J (2010) Fast molecular beacon hybridization in organic solvents with improved target specificity. J Phys Chem B 114:15694–15699

    Google Scholar 

  52. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415

    Google Scholar 

  53. Yang CJ, Lin H, Tan W (2005) Molecular assembly of superquenchers in signaling molecular interactions. J Am Chem Soc 127:12772–12773

    Google Scholar 

  54. Lovell JF, Chen J, Huynh E, Jarvi MT, Wilson BC, Zheng G (2010) Facile synthesis of advanced photodynamic molecular beacon architectures. Bioconj Chem 21:1023–1025

    Google Scholar 

  55. Lovell JF, Jin H, Ng KK, Zheng G (2010) Programmed nanoparticle aggregation using molecular beacons. Angewandte Chemie Int Ed 49:7917–7919

    Google Scholar 

  56. Kashida H, Yamaguchi K, Hara Y, Asanuma H (2012) Quencher-free molecular beacon tethering 7-hydroxycoumarin detects targets through protonation/deprotonation. Bioorg Med Chem 20:4310–4315

    Google Scholar 

  57. Venkatesan N, Seo YJ, Kim BH (2008) Quencher-free molecular beacons: a new strategy in fluorescence based nucleic acid analysis. Chem Soc Rev 37:648–663

    Google Scholar 

  58. Hwang GT, Seo YJ, Kim BH (2004) A highly discriminating quencher-free molecular beacon for probing DNA. J Am Chem Soc 126:6528–6529

    Google Scholar 

  59. Knemeyer J-P, Marmé N, Häfner B, Habl G, Schäfer G, Müller M, Nolte O, Sauer M, Wolfrum J (2005) Self-quenching DNA probes based on dye dimerization for identification of mycobacteria. Int J Env Anal Chem 85:625–637

    Google Scholar 

  60. Fujimoto K, Shimizu H, Inouye M (2004) Unambiguous detection of target DNAs by excimer-monomer switching molecular beacons. J Org Chem 69:3271–3275

    Google Scholar 

  61. Berndl S, Wagenknecht H-A (2009) Fluorescent color readout of DNA hybridization with thiazole orange as an artificial DNA base. Angewandte Chemie Int Ed 48:2418–2421

    Google Scholar 

  62. Zhang P, Beck T, Tan W (2001) Design of a molecular beacon DNA probe with two fluorophores. Angewandte Chemie Int Ed 40:402–405

    Google Scholar 

  63. Heinlein T, Knemeyer J-P, Piestert O, Sauer M (2003) Photoinduced electron transfer between fluorescent dyes and guanosine residues in DNA-hairpins. J Phys Chem B 107:7957–7964

    Google Scholar 

  64. Ryu JH, Seo YJ, Hwang GT, Lee JY, Kim BH (2007) Triad base pairs containing fluorene unit for quencher-free SNP typing. Tetrahedron 63:3538–3547

    Google Scholar 

  65. Okamoto A, Tainaka K, Ochi Y, Kanatani K, Saito I (2006) Simple SNP typing assay using a base-discriminating fluorescent probe. Mol BioSyst 2:122–127

    Google Scholar 

  66. Holzhauser C, Wagenknecht H-A (2011) In-stem-labeled molecular beacons for distinct fluorescent color readout. Angewandte Chemie Int Ed 50:7268–7272

    Google Scholar 

  67. Kim JH, Morikis D, Ozkan M (2004) Adaptation of inorganic quantum dots for stable molecular beacons. Sens Actuators B Chem 102:315–319

    Google Scholar 

  68. Yeh H-C, Sharma J, Han JJ, Martinez JS, Werner JH (2010) A DNA—silver nanocluster probe that fluoresces upon hybridization. Nano Lett 10:3106–3110

    Google Scholar 

  69. Huang K, Martí AA (2012) Recent trends in molecular beacon design and applications. Anal Bioanal Chem 402:3091–3102

    Google Scholar 

  70. Kim JH, Chaudhary S, Ozkan M (2007) Multicolour hybrid nanoprobes of molecular beacon conjugated quantum dots: FRET and gel electrophoresis assisted target DNA detection. Nanotechnology 18:195105

    Google Scholar 

  71. Yeh H-Y, Yates MV, Mulchandani A, Chen W (2010) Molecular beacon–quantum dot–Au nanoparticle hybrid nanoprobes for visualizing virus replication in living cells. Chem Commun 46:3914–3916

    Google Scholar 

  72. Hu X, Gao X (2010) Silica—polymer dual layer-encapsulated quantum dots with remarkable stability. ACS Nano 4:6080–6086

    Google Scholar 

  73. Wu C-S, Oo MKK, Cupps JM, Fan X (2011) Robust silica-coated quantum dot-molecular beacon for highly sensitive DNA detection. Biosens Bioelectron. doi: 10.1016/j.bios.2011.02.049

    Google Scholar 

  74. El-Hajj HH, Marras SAE, Tyagi S, Shashkina E, Kamboj M, Kiehn TE, Glickman MS, Kramer FR, Alland D (2009) Use of sloppy molecular beacon probes for identification of mycobacterial species. J Clin Microbiol 47:1190–1198

    Google Scholar 

  75. Chakravorty S, Kothari H, Aladegbami B et al (2012) Rapid, high-throughput detection of rifampin resistance and heteroresistance in Mycobacterium tuberculosis by use of sloppy molecular beacon melting temperature coding. J Clin Microbiol 50:2194–2202

    Google Scholar 

  76. Law B, Tung C-H (2009) Proteolysis: a biological process adapted in drug delivery, therapy, and imaging. Bioconj Chem 20:1683–1695

    Google Scholar 

  77. Turk B (2006) Targeting proteases: successes, failures and future prospects. Nat Rev Drug Discov 5:785–799

    Google Scholar 

  78. Li JJ, Geyer R, Tan W (2000) Using molecular beacons as a sensitive fluorescence assay for enzymatic cleavage of single-stranded DNA. Nucleic Acids Res 28:e52

    Google Scholar 

  79. Yamamoto R, Kumar PKR (2000) Molecular beacon aptamer fluoresces in the presence of Tat protein of HIV-1. Genes Cells 5:389–396

    Google Scholar 

  80. Matayoshi ED, Wang GT, Krafft GA, Erickson J (1990) Novel fluorogenic substrates for assaying retroviral proteases by resonance energy transfer. Science 247:954–958

    Google Scholar 

  81. Tung C-H (2004) Fluorescent peptide probes for in vivo diagnostic imaging. Biopolymers 76:391–403

    Google Scholar 

  82. Chen J, Liu TWB, Lo P-C, Wilson BC, Zheng G (2009) “Zipper” molecular beacons: a generalized strategy to optimize the performance of activatable protease probes. Bioconjug Chem 20:1836–1842

    Google Scholar 

  83. Egholm M, Buchardt O, Christensen L, Behrens C, Freier SM, Driver DA, Berg RH, Kim SK, Norden B, Nielsen PE (1993) PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen-bonding rules. Nature 365:566–568

    Google Scholar 

  84. Kam Y, Rubinstein A, Nissan A, Halle D, Yavin E (2012) Detection of endogenous K-ras mRNA in living cells at a single base resolution by a PNA molecular beacon. Mol Pharm 9:685–693

    Google Scholar 

  85. Tsourkas A, Behlke MA, Bao G (2002) Hybridization of 2′-O-methyl and 2′-deoxy molecular beacons to RNA and DNA targets. Nucl Acids Res 30:5168–5174

    Google Scholar 

  86. Zamaratski E, Pradeepkumar PI, Chattopadhyaya J (2001) A critical survey of the structure-function of the antisense oligo/RNA heteroduplex as substrate for RNase H. J Biochem Biophys Methods 48:189–208

    Google Scholar 

  87. Teplova M, Minasov G, Tereshko V, Inamati GB, Cook PD, Manoharan M, Egli M (1999) Crystal structure and improved antisense properties of 2′-O-(2-methoxyethyl)-RNA. Nat Struct Biol 6:535–539

    Google Scholar 

  88. Yang CJ, Martinez K, Lin H, Tan W (2006) Hybrid molecular probe for nucleic acid analysis in biological samples. J Am Chem Soc 128:9986–9987

    Google Scholar 

  89. Kim Y, Yang CJ, Tan W (2007) Superior structure stability and selectivity of hairpin nucleic acid probes with an l-DNA stem. Nucl Acids Res 35:7279–7287

    Google Scholar 

  90. Gifford LK, Jordan D, Pattanayak V, Vernovsky K, Do BT, Gewirtz AM, Lu P (2005) Stemless self-quenching reporter molecules identify target sequences in mRNA. Anal Biochem 347:77–88

    Google Scholar 

  91. Crey-Desbiolles C, Ahn D-R, Leumann CJ (2005) Molecular beacons with a homo-DNA stem: improving target selectivity. Nucleic Acids Res 33:77

    Google Scholar 

  92. Wang L, Yang CJ, Medley CD, Benner SA, Tan W (2005) Locked nucleic acid molecular beacons. J Am Chem Soc 127:15664–15665

    Google Scholar 

  93. Wu Y, Yang CJ, Moroz LL, Tan W (2008) Nucleic acid beacons for long-term real-time intracellular monitoring. Anal Chem 80:3025–3028

    Google Scholar 

  94. Chen Z, Chen H, Hu H, Yu M, Li F, Zhang Q, Zhou Z, Yi T, Huang C (2008) Versatile synthesis strategy for carboxylic acid-functionalized upconverting nanophosphors as biological labels. J Am Chem Soc 130:3023–3029

    Google Scholar 

  95. Liu L, Dong X, Lian W, Peng X, Liu Z, He Z, Wang Q (2010) Homogeneous competitive hybridization assay based on two-photon excitation fluorescence resonance energy transfer. Anal Chem 82:1381–1388

    Google Scholar 

  96. Liu L, Li H, Qiu T, Zhou G, Wong K-Y, He Z, Liu Z (2011) Construction of a molecular beacon based on two-photon excited fluorescence resonance energy transfer with quantum dot as donor. Chem Commun 47:2622–2624

    Google Scholar 

  97. Jacroux T, Rieck DC, Cui R, Ouyang Y, Dong W-J (2012) Enzymatic amplification of DNA/RNA hybrid molecular beacon signaling in nucleic acid detection. Anal Biochem 432:106–114

    Google Scholar 

  98. Vet JAM, Van der Rijt BJM, Blom HJ (2002) Molecular beacons: colorful analysis of nucleic acids. Expert Rev Mol Diagn 2:77–86

    Google Scholar 

  99. Qiao G, Zhuo L, Gao Y, Yu L, Li N, Tang B (2011) A tumor mRNA-dependent gold nanoparticle–molecular beacon carrier for controlled drug release and intracellular imaging. Chem Commun 47:7458–7460

    Google Scholar 

  100. Xu H, Hepel M (2011) Molecular beacon-based fluorescent assay for selective detection of glutathione and cysteine. Anal Chem 83:813–819

    Google Scholar 

  101. Cheng G, Shen B, Zhang F, Wu J, Xu Y, He P, Fang Y (2010) A new electrochemically active-inactive switching aptamer molecular beacon to detect thrombin directly in solution. Biosens Bioelectron 25:2265–2269

    Google Scholar 

  102. Jiang YL, McGoldrick CA, Yin D, Zhao J, Patel V, Brannon MF, Lightner JW, Krishnan K, Stone WL (2012) A specific molecular beacon probe for the detection of human prostate cancer cells. Bioorg Med Chem Lett 22:3632–3638

    Google Scholar 

  103. Liu A, Sun Z, Wang K, Chen X, Xu X, Wu Y, Lin X, Chen Y, Du M (2012) Molecular beacon-based fluorescence biosensor for the detection of gene fragment and PCR amplification products related to chronic myelogenous leukemia. Anal Bioanal Chem 402:805–812

    Google Scholar 

  104. Yarasi S, McConachie C, Loppnow GR (2005) Molecular beacon probes of photodamage in thymine and uracil oligonucleotides. Photochem Photobiol 81:467–473

    Google Scholar 

  105. El-Yazbi A, Loppnow GR (2011) Locked nucleic acid hairpin detection of UV-induced DNA damage. Can J Chem 89:402–408

    Google Scholar 

  106. Wang J, Onoshima D, Aki M, Okamoto Y, Kaji N, Tokeshi M, Baba Y (2011) Label-free detection of DNA-binding proteins based on microfluidic solid-state molecular beacon sensor. Anal Chem 83:3528–3532

    Google Scholar 

  107. Crul M, Van Waardenburg RCAM, Beijnen JH, Schellens JHM (2002) DNA-based drug interactions of cisplatin. Cancer Treat Rev 28:291–303

    Google Scholar 

  108. Shire ZJ, Loppnow GR (2012) Molecular beacon probes for the detection of cisplatin-induced DNA damage. Anal Bioanal Chem 403:179–184

    Google Scholar 

  109. Meng H-M, Fu T, Zhang X-B, Wang N-N, Tan W, Shen G-L, Yu R-Q (2012) Efficient fluorescence turn-on probe for zirconium via a target-triggered DNA molecular beacon strategy. Anal Chem 84:2124–2128

    Google Scholar 

  110. Stobiecka M, Molinero AA, Chałupa A, Hepel M (2012) Mercury/homocysteine ligation-induced ON/OFF-switching of a T–T mismatch-based oligonucleotide molecular beacon. Anal Chem 84:4970–4978

    Google Scholar 

  111. Wang Y, Li Z, Hu D, Lin C-T, Li J, Lin Y (2010) Aptamer/graphene oxide nanocomplex for in situ molecular probing in living cells. J Am Chem Soc 132:9274–9276

    Google Scholar 

  112. Zhou J, Lu Q, Tong Y, Wei W, Liu S (2012) Detection of DNA damage by using hairpin molecular beacon probes and graphene oxide. Talanta 99:625–630

    Google Scholar 

  113. Huang P-JJ, Liu J (2012) Molecular beacon lighting up on graphene oxide. Anal Chem 84:4192–4198

    Google Scholar 

  114. Huang P-JJ, Liu J (2012) DNA-length-dependent fluorescence signaling on graphene oxide surface. Small 8:977–983

    Google Scholar 

  115. Dong H, Ding L, Yan F, Ji H, Ju H (2011) The use of polyethylenimine-grafted graphene nanoribbon for cellular delivery of locked nucleic acid modified molecular beacon for recognition of microRNA. Biomaterials 32:3875–3882

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan F. Lovell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Lou, K., Lovell, J.F. (2014). Opportunities for New Photodynamic Molecular Beacon Designs. In: Cai, W. (eds) Engineering in Translational Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-4372-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4372-7_27

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4371-0

  • Online ISBN: 978-1-4471-4372-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics