Skip to main content

HRV and Alterations in the Vegetative Nervous System

  • Chapter
  • First Online:
Heart Rate Variability

Abstract

Heart rate variability is often discussed synonymously with imbalance within the autonomous system. HRV has been seen not only as an indicator for probable disturbances in the autonomous system. In a significant number of publications, it is even regarded as proof for ANS dysfunction without other kind of evidence (e.g., in Mazzeo et al. 2011). In this chapter I intend to review this hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamopoulos S, Piepoli M, McCance A, et al. Comparison of different methods for assessing sympathovagal balance in chronic congestive heart failure secondary to coronary artery disease. Am J Cardiol. 1992;70:1576–82.

    Article  PubMed  CAS  Google Scholar 

  • Brown DR, Brown LV, Patwardhan A, Randall DC. Sympathetic activity and blood pressure a tightly coupled at 0.4 Hz in conscious rats. Am J Physiol. 1994;267:R1378–84.

    PubMed  CAS  Google Scholar 

  • Burgess DE, Hundley JC, Li SG, Randall DC, Brown DR. First-order differential-delay equation for the baroreflex predicts the 0.4 Hz blood pressure rhythms in rats. Am J Physiol. 1997;273:R1878–84.

    PubMed  CAS  Google Scholar 

  • Casadei B, Cochrane S, Johnston J, Conway J, Sleight P. Pitfalls in the interpretation of spectral analysis of the heart rate variability during exercise in humans. Acta Physiol Scand. 1995;153:125–31.

    Article  PubMed  CAS  Google Scholar 

  • Cerutti C, Barres C, Paultre C. Baroreflex modulation of blood pressure and heart rate variabilities in rats: assessment by spectral analysis. Am J Physiol Heart Circ Physiol. 1994;266:H1993–2000.

    CAS  Google Scholar 

  • Critchley HD, Mathias CJ, Josephs O, O’Doherty J, Zanini S, Dewar BK, Cipolotti L, Shallice T, Dolan RJ. Human cingulate cortex and autonomic control: converging neuroimaging and clinical evidence. Brain. 2003;126:2139–52.

    Article  PubMed  Google Scholar 

  • DeBoer R, Karemaker J, Strackee J. Hemodynamic fluctuations and baroreflex sensitivity in humans: a beat-to-beat model. Am J Physiol Heart Circ Physiol. 1987;253:H680–9.

    CAS  Google Scholar 

  • Druschky A, Hilz MJ, Platsch G, Radespiegel-Tröger M, Druschky K, Kuwert T, Stefan H, Neundörfer B. Interictal cardiac autonomic dysfunction in temporal lobe epilepsy demonstrated by [123I]metaiodobenzylguanidine-SPECT. Brain. 2001;124:2372–82.

    Article  PubMed  CAS  Google Scholar 

  • Eckberg DL. Human sinus arrhythmia as an index of vagal cardiac outflow. J Appl Physiol. 1983;54:961–6.

    PubMed  CAS  Google Scholar 

  • Eckberg DL. Sympathovagal balance: a critical appraisal. Circulation. 1997;96:3224–32.

    Article  PubMed  CAS  Google Scholar 

  • Fouad FM, Tarazi RC, Ferrario CM, Fighaly S, Alicandri C. Assessment of parasympathetic control of heart rate by a noninvasive method. Am J Physiol. 1984;246:H838–42.

    PubMed  CAS  Google Scholar 

  • Goldberger JJ, Challapalli S, Tung R, et al. Relationship of heart rate variability to parasympathetic effect. Circulation. 2001;103:1977–83.

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez JJ, Cordero JJ, Feria M, Pereda E. Detection and sources of nonlinearity in the variability of cardiac R-R intervals and blood pressure in rats. Am J Physiol Heart Circ Physiol. 2000;279:H3040–6.

    PubMed  CAS  Google Scholar 

  • Gregoire J, Tuck S, Yamamoto Y, Hughson RL. Heart rate variability at rest and exercise: influence of age, gender, and physical training. Can J Appl Physiol. 1996;21:455–70.

    Article  PubMed  CAS  Google Scholar 

  • Grossman P, Karemaker J, Wieling W. Prediction of tonic parasympathetic cardiac control using respiratory sinus arrhythmia: the need for respiratory control. Psychophysiology. 1991;28:201–16.

    Article  PubMed  CAS  Google Scholar 

  • Hasking GJ, Esler MD, Jennings GL, Burton D, Johns JA, Korner PJ. Norepinephrine spillover to plasma in patients with congestive heart failure: evidence for increased overall and cardiorenal sympathetic nervous activity. Circulation. 1986;73:615–21.

    Article  PubMed  CAS  Google Scholar 

  • Hayano J, Sakakibara Y, Yamada A, Yamada M, Mukai S, Fujinami T, Yokoyama K, Watanabe Y, Takata K. Accuracy of assessment of cardiac vagal tone by heart rate variability in normal subjects. Am J Cardiol. 1991;67:199–204.

    Article  PubMed  CAS  Google Scholar 

  • Hopf HB, Skyschally A, Heusch G, Peters J. Low-frequency spectral power of heart rate variability is not a specific marker of cardiac sympathetic modulation. Anesthesiology. 1995;82:609–19.

    Article  PubMed  CAS  Google Scholar 

  • Introna R, Yodlowski E, Pruett J, Montano N, Porta A, Crumrine R. Sympathovagal effects of spinal anesthesia assessed by heart rate variability analysis. Anesth Analg. 1995;80:315–21.

    PubMed  CAS  Google Scholar 

  • Janson NB, Balanov AG, Anishchenko VS, McClintock PV. Phase synchronization between several interacting processes from univariate data. Phys Rev Lett. 2001;86:1749–52.

    Article  PubMed  CAS  Google Scholar 

  • Julien C, Zhang ZQ, Cerutti C, Head GA. Hemodynamic analysis for arterial pressure oscillations in conscious rats. J Auton Nerv Syst. 1995;50:239–52.

    Article  PubMed  CAS  Google Scholar 

  • Kingwell BA, Thompson JM, Kaye DM, McPherson GA, Jennings GL, Esler MD. Heart rate spectral analysis, cardiac norepinephrine spillover, and muscle sympathetic nerve activity during human sympathetic nervous activation and failure. Circulation. 1994;90:234–40.

    Article  PubMed  CAS  Google Scholar 

  • Koh J, Brown TE, Beightol LA, Ha CY, Eckberg DL. Human autonomic rhythms: vagal cardiac mechanisms in tetraplegic subjects. J Physiol (Lond). 1994;474:483–95.

    CAS  Google Scholar 

  • Kollai M, Mizsei G. Respiratory sinus arrhythmia is a limited measure of cardiac parasympathetic control in man. J Physiol (Lond). 1990;67:199–204.

    Google Scholar 

  • Lane RD, McRae K, Reiman EM, Chen K, Ahern GL, Thayer JF. Neural correlates of heart rate variability during emotion. Neuroimage. 2009;44:213–22.

    Article  PubMed  Google Scholar 

  • Malik M, Camm J. Components of heart rate variability – what they really mean and what we really measure. Am J Cardiol. 1993;72:821–2.

    Article  PubMed  CAS  Google Scholar 

  • Malliani A, Pagani M, Lombardi F, Cerutti S. Cardiovascular neural regulation explored in the frequency domain. Circulation. 1991;84:482–92.

    Article  PubMed  CAS  Google Scholar 

  • Malpas SC. Neural influences on cardiovascular variability: possibilities and pitfalls. Am J Physiol Heart Circ Physiol. 2002;282:H6–20.

    PubMed  CAS  Google Scholar 

  • Matthews SC, Paulus MP, Simmons AN, Nelesen RA, Dimsdale JE. Functional subdivisions within anterior cingulate cortex and their relationship to autonomic nervous system function. Neuroimage. 2004;22:1151–6.

    Article  PubMed  Google Scholar 

  • Mazzeo AT, La Monaca E, Di Leo R, Vita G, Santamaria LB. Heart rate variability: a diagnostic and prognostic tool in anesthesia and intensive care. Acta Anaesthesiol Scand. 2011;55:797–811.

    Article  PubMed  Google Scholar 

  • Montano N, Lombardi F, Gnecchi Ruscone R. Spectral analysis of sympathetic discharge, R-R interval and systolic arterial pressure in decerebrate cats. J Auton Nerv Syst. 1992;40:21–32.

    Article  PubMed  CAS  Google Scholar 

  • Napadow V, Dhond R, Conti G, Makris N, Brown EN, Barbieri R. Brain correlates of autonomic modulation: combining heart rate variability with fMRI. Neuroimage. 2008;42:169–77.

    Article  PubMed  Google Scholar 

  • Notarius CF, Floras JS. Limitations of the use of spectral analysis of heart rate variability for the estimation of cardiac sympathetic activity in heart failure. Europace. 2001;3:29–38.

    Article  PubMed  CAS  Google Scholar 

  • Oya M, Itoh H, Kato K, Tanabe K, Murayama M. Effects of exercise training on the recovery of the autonomic nervous system and exercise capacity after acute myocardial infarction. Jpn Circ J. 1999;63:843–8.

    Article  PubMed  CAS  Google Scholar 

  • Pagani M, Lombardi F, Guzetti S, Rimoldi O, Furlan R, Pizzinelli P, Sandrone G, Malfatto G, Dell’Orto S, Piccaluga E, Turiel M, Baselli G, Cerutti S, Maillaini A. Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog. Circ Res. 1986;59:178–93.

    Article  PubMed  CAS  Google Scholar 

  • Pagani M, Montano N, Porta A, Malliani A, Abboud FM, Birkett C, Somers VK. Relationship between spectral components of cardiovascular variabilities and direct measures of muscle sympathetic nerve activity in humans. Circulation. 1997;95:1441–8.

    Article  PubMed  CAS  Google Scholar 

  • Pomeranz B, Macaulay RJ, Caudill MA, Kutz I, Adam D, Gordon D, Kilborn KM, Barger AC, Shannon DC, Cohen RJ, Benson H. Assessment of autonomic function in humans by heart rate spectral analysis. Am J Physiol. 1985;248:H151–3.

    PubMed  CAS  Google Scholar 

  • Prokhorov MD, Ponomarenko VI, Gridnev VI, Bodrov MB, Bespyatov AB. Synchronization between main rhythmic processes in the human cardiovascular system. Phys Rev E. 2003;68:041913. doi:10.1103/PhysRevE.68.041913.

    Article  CAS  Google Scholar 

  • Rimoldi O, Pierini S, Ferrari A, Cerutti S, Pagani M, Malliani A. Analysis of short term oscillations of R-R and arterial pressure in conscious dogs. Am J Physiol. 1990;258:H967–76.

    PubMed  CAS  Google Scholar 

  • Ringwood JV, Malpas SC. Slow oscillations in blood pressure via a nonlinear feedback model. Am J Physiol. 2001;280:R1105–15.

    CAS  Google Scholar 

  • Rundqvist B, Elam M, Sverrisdottir Y, Eisenhofer G, Friberg P. Increased cardiac adrenergic drive precedes generalized sympathetic activation in human heart failure. Circulation. 1997;95:169–75.

    Article  PubMed  CAS  Google Scholar 

  • Saul JP, Rea RF, Eckberg DL, Berger RD, Cohen RJ. Heart rate and muscle sympathetic nerve variability during reflex changes of autonomic activity. Am J Physiol. 1990;258:H713–21.

    PubMed  CAS  Google Scholar 

  • Thayer JF. On the importance of inhibition: central and peripheral manifestations of nonlinear inhibitory processes in neural systems. Dose Response. 2006;4:2–21.

    Article  PubMed  CAS  Google Scholar 

  • Thayer JF, Sternberg E. Beyond heart rate variability: vagal regulation of allostatic systems. Ann N Y Acad Sci. 2006;1088:361–72.

    Article  PubMed  CAS  Google Scholar 

  • Thayer JF, Ahs F, Fredrikson M, Sollers 3rd JJ, Wager TD. A meta-analysis of heart rate variability and neuroimaging studies: implications for heart rate variability as a marker of stress and health. Neurosci Biobehav Rev. 2012;36:747–56.

    Article  PubMed  Google Scholar 

  • Tulppo M, Huikuri HV. Origin and significance of heart rate variability. J Am Coll Cardiol. 2004;16:2278–80.

    Article  Google Scholar 

  • Tulppo MP, Kiviniemi AM, Hautala AJ, Kallio M, Seppänen T, Mäkikallio TH, Huikuri HV. Physiological background of the loss of fractal heart rate dynamics. Circulation. 2005;112:314–9.

    Article  PubMed  Google Scholar 

  • Uechi M, Asai K, Osaka M, Smith A, Dato N, Wagner TE, Ishikawa Y, Hayakawa H, Vatner DE, Shannon RP, Homcy CJ, Vatner SF. Depressed heart rate variability and arterial baroreflex in conscious transgenic mice with overexpression of cardiac Gsalpha. Circ Res. 1998;82:416–23.

    Article  PubMed  CAS  Google Scholar 

  • Van de Borne P, Montano N, Pagani M, Oren R, Somers VK. Absence of low-frequency variability of sympathetic nerve activity in severe heart failure. Circulation. 1997;95:1449–54.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag London

About this chapter

Cite this chapter

Ernst, G. (2014). HRV and Alterations in the Vegetative Nervous System. In: Heart Rate Variability. Springer, London. https://doi.org/10.1007/978-1-4471-4309-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4309-3_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4308-6

  • Online ISBN: 978-1-4471-4309-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics