Skip to main content

Fetal Neural Tissue Transplantation for Spinal Cord Injury Repair

  • Chapter
  • First Online:
Human Fetal Tissue Transplantation
  • 858 Accesses

Abstract

Spinal cord being the sole communication link between brain and parts below the neck, its injury invariably results in dreaded sensory and motor control loss. Mankind’s recognition of spinal cord injury (SCI) and its consequence dates back to 2500 B.C. evident from vivid descriptions given in Greek papyrus. Despite such early recognition, pathophysiology of SCI and prospective therapies were not identified until early part of previous century. In a review, Osterholm [32] had summarized various pathological events that ensue SCI which ranges from petechial hemorrhage immediately after injury to secondary necrosis and cavitations which take several days to weeks to develop.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bagden KE, Bregman BS. Spinal cord transplants enhance the recovery of locomotor function after ­spinal cord injury at birth. Exp Brain Res. 1990;81:25–34.

    Google Scholar 

  2. Bongso A, Fong CY, Gauthaman K. Taking stem cells to the clinic: major challenges. J Cell Biochem. 2008;105:1352–60.

    Article  PubMed  CAS  Google Scholar 

  3. Bregman BS, Goral HB. Both regenerating and late-developing pathways contribute to transplant-induced anatomical plasticity after spinal cord lesion at birth. Exp Neurol. 1991;112:49–63.

    Article  PubMed  CAS  Google Scholar 

  4. Bregman BS, Kunkel-Bagden E, Reier PJ, Dai HN, McAtee M, Gao D. Recovery of function after spinal cord injury: mechanisms underlying transplant mediated recovery of function differ after spinal cord injury in newborn and adult rats. Exp Neurol. 1993;123:3–16.

    Article  PubMed  CAS  Google Scholar 

  5. Bregman BS, Reier PJ. Neural tissue transplants rescue axotomised rubrospinal cells from retrograde death. J Comp Neurol. 1986;244:86–95.

    Article  PubMed  CAS  Google Scholar 

  6. Buchanan JT, Nornes HO. Transplants of embryonic brainstem containing the locus coeruleus into spinal cord enhance the hindlimb flexion reflex in adult rats. Brain Res. 1986;381:225–36.

    Article  PubMed  CAS  Google Scholar 

  7. Bunge RP, Johnson MI, Thuline D. Spinal cord reconstruction using cultured embryonic spinal cord strips. In: Kao CC, Bunge RP, Reier PJ, editors. Spinal cord reconstruction. New York: Raven Press; 1983. p. 341–58.

    Google Scholar 

  8. Carson CT, Aigner S, Gage FH. Stem cells: the good, bad and barely in control. Nat Med. 2006;12:1259–68.

    Article  Google Scholar 

  9. Cízková D, Rosocha J, Vanický I, Jergová S, Cízek M. Transplants of human mesenchymal stem cells improve functional recovery after spinal cord injury in the rat. Cell Mol Neurobiol. 2006;26:1167–80.

    Article  PubMed  Google Scholar 

  10. Clarkson ED. Fetal tissue transplantation for patients with Parkinson’s disease: a database of published clinical results. Drugs Aging. 2001;18:773–85.

    Article  PubMed  CAS  Google Scholar 

  11. Croft AP, Przyborski SA. Formation of neurons by non-neural adult stem cells: potential mechanism implicates an artifact of growth in culture. Stem Cells. 2006;24:1841–51.

    Article  PubMed  CAS  Google Scholar 

  12. Culling CFA. Handbook of histopathological and histochemical techniques. London: Butterworth & Co. (Publishers) Ltd.; 1974.

    Article  PubMed  CAS  Google Scholar 

  13. Das GD. Neural transplantation in mammalian brain: some conceptual and technical considerations. In: Wallace RB, Das GD, editors. Neural transplantation research. Berlin: Springer; 1983. p. 1–64.

    Chapter  Google Scholar 

  14. Das GD. Chapter 1: Neural transplantation in spinal cord under different conditions of lesions and their functional significance. In: Das GD, Wallace RB, ­editors. Neural transplantation and regeneration. New York: Springer; 1986. p. 1–61.

    Chapter  Google Scholar 

  15. Diener PS, Bregman BS. Fetal spinal cord transplants support growth of supraspinal and segmental ­projections after cervical spinal cord hemisection in the neonatal rat. J Neurosci. 1998;18:779–93.

    PubMed  CAS  Google Scholar 

  16. Giovanni SD. Regeneration following spinal cord injury, from experimental models to humans: where are we? Expert Opin Ther Targets. 2006;10:363–76.

    Article  PubMed  Google Scholar 

  17. Goral HB, Bregman BS. Spinal cord transplants ­support the regeneration of axotomized neurons after spinal cord lesion at birth: a quantitative double-labeling study. Exp Neurol. 1993;123:118–32.

    Article  Google Scholar 

  18. Hallas BH. Transplantation into the mammalian adult spinal cord. Experientia. 1982;38:699–701.

    Article  PubMed  CAS  Google Scholar 

  19. Hayes KC, Kakulas BA. Neuropathology of human spinal cord injury sustained in sports-related activities. J Neurotrauma. 1997;14:235–48.

    Article  PubMed  CAS  Google Scholar 

  20. Houle JD, Reier PJ. Transplantation of fetal spinal cord tissue into the chronically injured adult rat spinal cord. J Comp Neurol. 1988;269:535–47.

    Article  PubMed  CAS  Google Scholar 

  21. Itoh Y, Tessler A. Regeneration of adult dorsal root axons into transplants of fetal spinal cord and brain: a comparison of growth and synapse formation in appropriate and inappropriate targets. J Comp Neurol. 1990;302:272–93.

    Article  PubMed  CAS  Google Scholar 

  22. Jakeman LB, Reier PJ. Axonal projections between fetal spinal cord transplants and the adult rat spinal cord: a neuroanatomical tracing study of local interactions. J Comp Neurol. 1991;307:311–34.

    Article  PubMed  CAS  Google Scholar 

  23. Jones LL, Oudega M, Bunge MB, Tuszynski MH. Topical review – neurotrophic factors, cellular bridges and gene therapy for spinal cord injury. J Physiol. 2001;533:83–9.

    Article  PubMed  CAS  Google Scholar 

  24. Kao CC, Bunge RP, Reier PJ, editors. Spinal cord reconstruction. New York: Raven Press; 1983.

    Google Scholar 

  25. Kao CC, Shimizu Y, Perkins LC, Freeman LW. Experimental use of cultured cerebellar cortical tissue to inhibit the collagenous scar following spinal cord transection. J Neurosurg. 1970;33:127–39.

    Article  PubMed  CAS  Google Scholar 

  26. Kim JH, Auerbach JM, Rodriguez-Gomez JA, Velasco I, Gavin D, Lumelsky N, Lee SH, Nguyen J, Sanchez-Pernaute R, Bankiewicz K, McKay R. Dopamine neurons derived from embryonic stem cells function in an animal mode of Parkinson’s disease. Nature. 2002;418:50–6.

    Article  PubMed  CAS  Google Scholar 

  27. McDonald JW, Liu XZ, Qu Y, Liu S, Mickey SK, Turetsky D, Gottlieb DI, Choi DW. Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat Med. 1999;5:1410–2.

    Article  PubMed  CAS  Google Scholar 

  28. Miya D, Giszter S, Mori F, Adipudi V, Tessler A, Murray M. Fetal transplants alter the development of function after spinal cord transection in newborn rats. J Neurosci. 1997;17:4856–72.

    PubMed  CAS  Google Scholar 

  29. Nogradi A. Chapter 4: Encouraging regeneration of host neurons: the use of peripheral nerve bridges, glial cells or biomaterials. In: Vrbova G, Clowry G, Nogradi A, Sieradzan K, editors. Transplantation of neural tissue into the spinal cord. Austin: R.G. Landes Company; 1994. p. 51–67.

    Google Scholar 

  30. Nornes H, Bjorklund A, Stenevi U. Reinnervation of the denervated adult spinal cord of rats by intraspinal transplants of embryonic brain stem neurons. Cell Tissue Res. 1983;230:15–35.

    Article  PubMed  CAS  Google Scholar 

  31. Nornes H, Bjorklund A, Stenevi U. Transplantation strategies in spinal cord regeneration. In: Sladek JR, Gash DM, editors. Neural transplants – development and function. London: Plenum Press; 1984. p. 407–21. Chapter 7.

    Chapter  Google Scholar 

  32. Nothias F, Peschanski M. Homotypic fetal transplants into an experimental model of spinal cord neurodegeneration. J Comp Neurol. 1995;301:520–34.

    Article  Google Scholar 

  33. Osterholm JL. The pathophysiological response to spinal cord injury – special review. J Neurosurg. 1974;40:3–33.

    Article  Google Scholar 

  34. Pallini R, Fernandez E, Gangitano C, Del F, Sangiacomo OC, Sbriccoli A. Studies on embryonic transplants to the transected spinal cord of adult rats. J Neurosurg. 1989;70:454–62.

    Article  PubMed  CAS  Google Scholar 

  35. Patel U, Bernstein JJ. Growth, differentiation and viability of fetal cortical and spinal cord implants into adult rat spinal cord. J Neurosci Res. 1983;9:303–10.

    Article  PubMed  CAS  Google Scholar 

  36. Reier PJ. Cellular transplantation strategies for spinal cord injury and translational neurobiology. NeuroRx. 2004;1:424–51.

    Article  PubMed  Google Scholar 

  37. Reier PJ, Bregman BS, Wujek JR. Intra-spinal transplantation of embryonic spinal cord tissue in neonatal and adult rats. J Comp Neurol. 1986;247:275–96.

    Article  PubMed  CAS  Google Scholar 

  38. Reier PJ, Stensaas LJ, Guth L. The astrocytic scar as an impediment to regeneration in the central nervous system. In: Kao CC, Bunge RP, Reier PJ, editors. Spinal cord reconstruction. New York: Raven Press; 1983. p. 163–95.

    Google Scholar 

  39. Sankar V, Muthusamy R. Role of human amniotic epithelial cell transplantation in spinal cord injury repair research. Neuroscience. 2003;118:11–7.

    Article  PubMed  CAS  Google Scholar 

  40. Shimizu Y. Transplantation of cultured cerebellar autografts into the spinal cords of chronic paraplegic dogs. In: Kao CC, Bunge RP, Reier PJ, editors. Spinal cord reconstruction. New York: Raven Press; 1983. p. 359–66.

    Google Scholar 

  41. Stokes BT, Reier PJ. Oxygen transport in intraspinal fetal grafts: graft-host relations. Exp Neurol. 1991;111:312–23.

    Article  PubMed  CAS  Google Scholar 

  42. Stokes BT, Reier PJ. Fetal grafts alter chronic behavioral outcome after contusion damage to the adult rat spinal cord. Exp Neurol. 1992;116:2–12.

    Article  Google Scholar 

  43. Tessler A, Himes BT, Houle J, Reier PJ. Regeneration of adult dorsal root axons into transplants of embryonic spinal cord. J Comp Neurol. 1988;270:537–48.

    Article  PubMed  CAS  Google Scholar 

  44. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–7.

    Article  PubMed  CAS  Google Scholar 

  45. Xie F, Zheng B. White matter inhibitors in CNS axon regeneration failure. Exp Neurol. 2008;209:302–12.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sankar Venkatachalam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag London

About this chapter

Cite this chapter

Venkatachalam, S. (2013). Fetal Neural Tissue Transplantation for Spinal Cord Injury Repair. In: Bhattacharya, N., Stubblefield, P. (eds) Human Fetal Tissue Transplantation. Springer, London. https://doi.org/10.1007/978-1-4471-4171-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4171-6_23

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4170-9

  • Online ISBN: 978-1-4471-4171-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics