Skip to main content

Design and Fabrication of DNA Origami Mechanisms and Machines

  • Conference paper
  • First Online:
Advances in Reconfigurable Mechanisms and Robots I

Abstract

The goal of this paper is to introduce scaffolded DNA origami as a viable approach to the design of nanoscale mechanisms and machines. Resembling concepts of links and joints in macro scale mechanisms and machines, we propose the concept of DNA Origami Mechanisms and Machines (DOMM) that are comprised of multiple links connected by joints. Realization of nanoscale machines would pave the way for novel devices and processes with potential to revolutionize medicine, manufacturing, and environmental sensing. The realization of nanoscale machines and robots will enable scientists to manipulate and assemble nano objects in a more precise, efficient and convenient way at the molecular scale. For example, DNA nanomachinery could potentially be used for nano manufacturing, molecular transport in bioreactors, targeting cancer cells for drug delivery, or even repairing damaged tissue. As a proof of concept, we build a nanoscale spatial Bennett 4-bar mechanism that can be completely folded and unfolded with a specified kinematic motion path. The links comprise a 16 double stranded DNA (dsDNA) helices bundled in a 4 by 4 square cross-section yielding a high mechanical stiffness. The joints (in this case hinges) are designed using single strand DNA (ssDNA) connections between the links. This DOMM was designed within caDNAno, a recently developed computer-aided DNA origami design software, and then fabricated via a molecular self-assembly process. The resulting structure was imaged by transmission electron microscopy to identify structural conformations. Our results show that the designed DNA origami Bennett mechanism closely follows the kinematics of their rigid body counterparts. This research has the potential of opening a new era of design, analysis and manufacture of nanomechanisms, nanomachines and nanorobots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McCarthy JM (2000) Geometric design of linkages. Springer, New York

    MATH  Google Scholar 

  2. Erdman AG, Sandor GN, Kota S (2001) Mechanism design analysis and synthesis, 4th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  3. Chirikjian GS, Kazerounian K, Mavroidis C (2005) Analysis and design of protein based nanodevices: challenges and opportunities in mechanical design. J Mech Des 127(4):695–698

    Article  Google Scholar 

  4. Chirikjian GS (2001) Conformational statistics of macromolecules using generalized convolution. Comput Theor Polym Sci 11(2):143–153

    Article  Google Scholar 

  5. Kazerounian K (2004) From mechanisms and robotics to protein conformation and drug design. J Mech Des 126(1):40–45

    Article  Google Scholar 

  6. Kazerounian K, Latif K, Alvarado C (2005) Protofold: a successive kinetostatic compliance method for protein conformation prediction. J Mech Des 127(4):712–717

    Article  Google Scholar 

  7. Mavroidis C, Dubey A (2004) Bio-Nanorobotics: state of the art and future challenges. In: Yarmush ML (ed) The Biomedical Engineering Handbook, 3rd edn. CRC Press LLC

    Google Scholar 

  8. Hamdi M, Ferreira A (2009) Multiscale design and modeling of protein-based nanomechanisms for nanorobotics. Int J Robot Res 28(4):436–449

    Article  Google Scholar 

  9. Sharma G, Mavroidis C, Rege K, Yarmush ML, Budil D (2009) Computational studies of a protein-based nanoactuator for nanogripping applications. Int J Robot Res 28(4):421–435

    Article  Google Scholar 

  10. Dill KA, Ozkan SB, Shell MS, Weikl TR (2008) The protein folding problem. Ann Rev Biophys 37:289–316

    Article  Google Scholar 

  11. Kuhlman B, Dantas G, Ireton G, Varani G, Stoddard B, Baker D (2003) Design of a novel globular protein fold with atomic-level accuracy. Science 302(5649):1364–1368

    Article  Google Scholar 

  12. Baker D (2006) Prediction and design of macromolecular structures and interactions. Philos Trans R Soc B Biol Sci 361(1467):459–463

    Article  Google Scholar 

  13. Leaver-Fay A, Jacak R, Stranges PB, Kuhlman B (2011) A generic program for multistate protein design. PLos ONE 6(7):e20937

    Article  Google Scholar 

  14. Watson J, Crick F (1953) Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171(4356):737–738

    Article  Google Scholar 

  15. Yakovchuk P, Protozanova E, Frank-Kamenetskii MD (2006) Base-stacking and base-pairing contributions into thermal stability of the DNA double helix. Nucleic Acids Res 34(2):564–574

    Article  Google Scholar 

  16. Seeman NC (1982) Nucleic acid junctions and lattices. J Theor Biol 99(2):237–247

    Article  Google Scholar 

  17. Chen JH, Seeman NC (1991) Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350(6319):631–633

    Article  Google Scholar 

  18. Li X, Yang X, Qi J, Seeman NC (1996) Antiparallel DNA double crossover molecules as components for nanoconstruction. J Am Chem Soc 118(26):6131–6140

    Article  Google Scholar 

  19. Seeman NC (2003) DNA in a material world. Nature 421(6921):427–431

    Article  MathSciNet  Google Scholar 

  20. Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440(7082):297–302

    Article  Google Scholar 

  21. Douglas SM, Dietz H, Liedl T, Hogberg B, Graf F, Shih WM (2009) Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459(7245):414–418

    Article  Google Scholar 

  22. Castro CE, Kilchherr F, Kim D-N, Shiao EL, Wauer T, Wortmann P, Bathe M, Dietz H (2011) A primer to scaffolded DNA origami. Nat Methods 8(3):221–229

    Article  Google Scholar 

  23. Ke Y, Sharma J, Liu M, Jahn K, Liu Y, Yan H (2009) Scaffolded DNA origami of a DNA tetrahedron molecular container. Nano Lett 9(6):2445–2447 (PMID: 19419184)

    Google Scholar 

  24. Jungmann R, Scheible M, Kuzyk A, Pardatscher G, Castro CE, Simmel FC (2011) DNA origami-based nanoribbons: assembly, length distribution, and twist. Nanotechnology 22(27):275–301

    Article  Google Scholar 

  25. Maune HT, Han S-P, Barish RD, Bockrath M, Iii WAG, Rothemund PWK, Winfree E (2010) Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates. Nat Nanotechnol 5(1):61–66

    Article  Google Scholar 

  26. Liedl T, Hogberg B, Tytell J, Ingber DE, Shih WM (2010) Self-assembly of three-dimensional prestressed tensegrity structures from DNA. Nat Nanotechnol 5(7):520–524

    Article  Google Scholar 

  27. Dietz H, Douglas SM, Shih WM (2009) Folding DNA into twisted and curved nanoscale shapes. Science 325(5941):725–730

    Article  Google Scholar 

  28. Andersen ES, Dong M, Nielsen MM, Jahn K, Lind-Thomsen A, Mamdouh W, Gothelf KV, Besenbacher F, Kjems J (2008) DNA origami design of dolphin-shaped structures with flexible tails. ACS Nano 2(6):1213–1218

    Article  Google Scholar 

  29. Douglas SM, Marblestone AH, Teerapittayanon S, Vazquez A, Church GM, Shih WM (2009) Rapid prototyping of 3d DNA-origami shapes with cadnano. Nucleic Acids Res 37(15):5001–5006

    Article  Google Scholar 

  30. Bennett GT (1914) The skew isogram mechanism. Proc London Math Soc s2-13(1):151–173

    Article  Google Scholar 

  31. Chen Y (2009) Design of Structural Mechanisms. D.Phil. Dissertation, University of Oxford, UK

    Google Scholar 

  32. Ke Y, Douglas SM, Liu M, Sharma J, Cheng A, Leung A, Liu Y, Shih WM, Yan H (2009) Multilayer DNA origami packed on a square lattice. J Am Chem Soc 131(43):15903–15908

    Article  Google Scholar 

  33. Lilley D (1997) All change at holliday junction. Proc Natl Acad Sci U S A 94(18):9513–9515

    Article  Google Scholar 

  34. Perez A, McCarthy J (2002) Bennett’s linkage and the cylindroid. Mech Mach Theor 37(11):1245–1260

    Article  MathSciNet  MATH  Google Scholar 

  35. Chen Y, You Z (2006) Square deployable frames for space applications. Part 1: Theory. Proc Inst Mech Eng [G] 220(4):347–354.

    Google Scholar 

  36. Chen Y, You Z (2007) Square deployable frames for space applications. Part 2: Realization. Proc Inst Mech Eng [G] 221(1):37–45

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Jun Su .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this paper

Cite this paper

Su, HJ., Castro, C.E., Marras, A.E., Hudoba, M. (2012). Design and Fabrication of DNA Origami Mechanisms and Machines. In: Dai, J., Zoppi, M., Kong, X. (eds) Advances in Reconfigurable Mechanisms and Robots I. Springer, London. https://doi.org/10.1007/978-1-4471-4141-9_44

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4141-9_44

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4140-2

  • Online ISBN: 978-1-4471-4141-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics