Skip to main content

Permeability in Clay/Polyesters Nano-Biocomposites

  • Chapter
  • First Online:
Environmental Silicate Nano-Biocomposites

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

In this chapter we focus on the barrier properties of nanocomposite of biodegradable polyesters with layered inorganic fillers. First of all, to better understand the influence of the lamellar inorganic fillers on the permeability, the theory of permeation and the barrier models so far developed for polymer nanocomposites are reviewed. Afterwards the barrier properties of the most important biodegradable polyesters filled with inorganic lamellar solids, such as Polylactic acid (PLA), Polycaprolactone (PCL), Polyhydroxbutyrate (PHB), and Polybutylenesuccinate (PBS) are reviewed and the outstanding results enlightened. As a general trend, the best improvement of barrier properties is related to the exfoliation of clay platelets into the polymeric matrix, and this in turn is dependent on the chemical structure of the clay, the organic modification, the filler concentration and the processing procedure to prepare the composite. Where possible, all these parameters were reported and correlated with the final properties. Also the contrasting effect of clays on the two parameters determining the water permeability, that is sorption and diffusion, is reported in many cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kaplan DL (1998) Biopolymers from renewable resources. Springer, New York

    Google Scholar 

  2. Fakirov S, Bhattacharya D (2007) Engineering biopolymers: homopolymers, Blends and Composites. Hanser Gardner Pubns, Munchen

    Google Scholar 

  3. Van de Velde K, Kiekens P (2002) Biopolymers: overview of several properties and consequences on their applications. Polym Testing 21:433–442

    Article  Google Scholar 

  4. Bordes P, Pollet E, Averous L (2009) Nano-biocomposites: biodegradable polyester/nanoclay systems. Prog Polym Sci 34(2):125–155

    Article  CAS  Google Scholar 

  5. Pan P, Inoue Y (2009) Polymorphism and isomorphism in biodegradable polyesters. Prog Polym Sci 34(7):605–640

    Article  CAS  Google Scholar 

  6. Siracusa V, Rocculi P, Romani S, Dalla Rosa M (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19(12):634–643

    Article  CAS  Google Scholar 

  7. Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites preparation, properties and uses of a new class of materials. Mater Sci Eng 28:1–11

    Article  Google Scholar 

  8. Sinha Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641

    Article  Google Scholar 

  9. Bharadwaj RK (2001) Modeling the barrier properties of polymer-layered silicate nanocomposites. Macromolecules 34:9189–9192

    Article  CAS  Google Scholar 

  10. Sorrentino A, Tortora M, Vittoria V (2006) Diffusion behaviour in polymer-clay nanocomposites. J Polym Sci B Polym Phys 44(2):265–274

    Article  CAS  Google Scholar 

  11. Oya A, Kurokawa Y, Yasuda H (2000) Factors controlling mechanical properties of clay mineral/polypropylene nanocomposites. J Mater Sci 35:1045–1050

    Article  CAS  Google Scholar 

  12. Picard E, Vermogen A, Gérard JF, Espuche E (2008) Influence of the compatibilizer polarity and molar mass on the morphology and the gas barrier properties of polyethylene/clay nanocomposites. J Polym Sci B Polym Phys 46(23):2593–2604

    Article  CAS  Google Scholar 

  13. Durmus A, Woo M, Kasgoz A, Macosko CW, Tsapatsis M (2007) Intercalated linear low density polyethylene (LLDPE)/clay nanocomposites prepared with oxidized polyethylene as a new type compatibilizer: structural, mechanical and barrier properties. Eur Polym J 43(9):3737–3749

    Article  CAS  Google Scholar 

  14. Giannelis EP (1996) Polymer layered silicate nanocomposites. Adv Mater 8(1):29–35

    Article  CAS  Google Scholar 

  15. Vieth WR (1991) Diffusion in and through polymers: principles and applications. Hanser, New York

    Google Scholar 

  16. Lucian AL, Orlando JR (2009) The nanoscience and technology of renewable biomaterials. Wiley, Chichester

    Book  Google Scholar 

  17. Frisch HL, Rogers CE (1966) Transport in polymers. J Polym Sci C 12:297–315

    Article  Google Scholar 

  18. Cussler EL (1997) Diffusion: mass transfer in fluid systems. Cambridge University Press, New York

    Google Scholar 

  19. Frisch HL (1980) Sorption and transport in glassy polymers: a review. Polym Eng Sci 20(1):2–13

    Article  Google Scholar 

  20. Peterlin A (1975) Dependence of diffusive transport on the morphology of crystalline polymers. J Macromol Sci Phys B11(1):57–87

    Article  CAS  Google Scholar 

  21. Comyn J (1985) Polymer permeability. Elsevier Appl Sci, London

    Book  Google Scholar 

  22. Vieth WR, Amini MA (1974) In: Hopfenberg HB (ed) Permeability of plastic films and coatings. Plenum Press, London

    Google Scholar 

  23. Soney CG, Sabu T (2001) Transport phenomena through polymeric systems. Prog Polym Sci 26(6):985–1017

    Article  Google Scholar 

  24. Hedenqvist M, Gedde UW (1996) Diffusion of small-molecule penetrants in semicrystalline polymers. Prog Polym Sci 21(2):299–333

    Article  CAS  Google Scholar 

  25. Shastri R, Roehrs HC, Brown CN, Dollinger SE (1990) Permeability of competitive oxygen-barrier resins: orientability and effect of orientation. In: Barrier polymers and structures ACS symposium series, vol. 423, pp 239–251, ISBN: 9780841212794 Chap. 12

    Google Scholar 

  26. Tabatabaei SH, Carreau PJ, Ajji A (2008) Microporous membranes obtained from polypropylene blend films by stretching. J Membr Sci 325(2):772–782

    Article  CAS  Google Scholar 

  27. Sorrentino A, Gorrasi G, Tortora M, Vittoria V (2006) Barrier properties of polymer/clay nanocomposites. In: Mai Y-W, Yu Z-Z (eds.) Polymer nanocomposites, “Woodhead Publishing Ltd”, Cambridge, pp 273–292 Chap. 11

    Google Scholar 

  28. Neilsen LE (1967) Models for the permeability of filled polymers. J Macromol Sci (Chem) A1(5):929–942

    Article  Google Scholar 

  29. Fredrickson GH, Bicerano J (1999) Barrier properties of oriented disk composites. J Chem Phys 110:2181–2188

    Article  CAS  Google Scholar 

  30. Lape NK, Nuxoll EE, Cussler EL (2004) Polydisperse flakes in barrier films. J Membr Sci 236:29–37

    Article  CAS  Google Scholar 

  31. Lim L-T, Auras R, Rubino M (2008) Processing technologies for poly(lactic acid). Prog Polym Sci 33(8):820–852

    Article  CAS  Google Scholar 

  32. Garlotta D (2001) A literature review of poly(lactic acid). J Polym Environ 9(2):63–84

    Article  CAS  Google Scholar 

  33. Sinha Ray S, Yamada K, Ogami A, Okamoto M, Ueda K (2002) New polylactide/layered silicate nanocomposite: nanoscale control over multiple properties. Macromol Rapid Commun 23(16):943–947

    Article  Google Scholar 

  34. Ozkoc G, Kemaloglu S, Quaedflieg M (2010) Production of poly(lactic acid)/organoclay nanocomposite scaffolds by microcompounding and polymer/particle leaching. Polym Compos 31(4):674–683

    CAS  Google Scholar 

  35. Sinha Ray S, Okamoto K, Yamada K, Okamoto M (2002) Novel porous ceramic material via burning of polylactide/layered silicate nanocomposite. Nano Lett 2(4):423–425

    Article  Google Scholar 

  36. Sinha Ray S, Yamada K, Okamoto M, Fujimoto Y, Ogami A, Ueda K (2003) New polylactide/layered silicate nanocomposites. 5. Designing of materials with desired properties. Polymer 44(21):6633–6646

    Google Scholar 

  37. Sinha Ray S, Yamada K, Okamoto M, Ueda K (2002) Polylactide-layered silicate nanocomposite: a novel biodegradable material. Nano Lett 2(10):1093–1096

    Article  Google Scholar 

  38. Pluta M, Galeski A, Alexandre M, Paul M-A, Dubois P (2002) Polylactide/montmorillonite nanocomposites and microcomposites prepared by melt blending: structure and some physical properties. J Appl Polym Sci 86(6):1497–1506

    Article  CAS  Google Scholar 

  39. Balakrishnan H, Hassan A, Wahit M-U, Yussuf AA, Razak SBA (2010) Novel toughened polylactic acid nanocomposite: mechanical, thermal and morphological properties. Mater Des 31(7):3289–3298

    Article  CAS  Google Scholar 

  40. Rhim J-W, Hong S-I, Ha C-S (2009) Tensile, water vapor barrier and antimicrobial properties of PLA/nanoclay composite films. LWT–Food. Sci Technol 42(2):612–617

    CAS  Google Scholar 

  41. Cava D, Cabedo L, Gimenez E, Gavara R, Lagaron JM (2006) The effect of ethylene content on the interaction between ethylene-vinyl alcohol copolymers and water: (I) Application of FT-IR spectroscopy to determine transport properties and interactions in food packaging films. Polym Testing 25(2):254–261

    Article  CAS  Google Scholar 

  42. Sinha Ray S, Yamada K, Okamoto M, Ogami A, Ueda K (2003) New polylactide/layered silicate nanocomposites. 3. high-performance biodegradable materials. Chem Mater 15(7):1456–1465

    Google Scholar 

  43. Maiti P, Yamada K, Okamoto M, Ueda K, Okamoto K (2002) New polylactide/layered silicate nanocomposites: role of organoclays. Chem Mater 14(11):4654–4661

    Article  CAS  Google Scholar 

  44. Chowdhury SR (2008) Some important aspects in designing high molecular weight poly(L-lactic acid)—clay nanocomposites with desired properties. Polym Int 57(12):1326–1332

    Article  CAS  Google Scholar 

  45. Chang J-H, An YU, Sur GS (2003) Poly(lactic acid) nanocomposites with various organoclays. I. Thermomechanical properties, morphology, and gas permeability. J Polym Sci B Polym Phys 41(1):94–103

    Article  CAS  Google Scholar 

  46. Thellen C, Orroth C, Froio D, Ziegler D, Lucciarini J, Farrell R, D’Souza NA, Ratto JA (2005) Influence of montmorillonite layered silicate on plasticized poly(L-lactide) blown films. Polymer 46(25):11716–11727

    Article  CAS  Google Scholar 

  47. Ogata N, Jimenez G, Kawai H, Ogihara T (1997) Structure and thermal/mechanical properties of poly(l-lactide)-clay blend. J Polym Sci B Polym Phys 35(2):389–396

    Article  CAS  Google Scholar 

  48. Plackett D, Sodergard A (2005) Polylactide-based biocomposites. In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibers, biopolymers, and biocomposites. CRC Press, Boca Raton, pp 579–598

    Google Scholar 

  49. Petersson L, Oksman K (2006) Biopolymer based nanocomposites: comparing layered silicates and microcrystalline cellulose as nanoreinforcement. Compos Sci Technol 66(13):2187–2196

    Article  CAS  Google Scholar 

  50. Sinha Ray S, Maiti P, Okamoto M, Yamada K, Ueda K (2002) New polylactide/layered silicate nanocomposites. 1. Preparation, characterization, and properties. macromolecules 35(8):3104–3110

    Google Scholar 

  51. Pandey JK, Kumar AP, Misra M, Mohanty AK, Drzal LT, Singh RP (2005) Recent advances in biodegradable nanocomposites. J Nanosci Nanotechnol 5(4):497–526

    Article  CAS  Google Scholar 

  52. Koh HC, Park JS, Jeong MA, Hwang HY, Hong YT, Ha SY, Nam SY (2008) Preparation and gas permeation properties of biodegradable polymer/layered silicate nanocomposite membranes. Desalination 233(1–3):201–209

    Article  CAS  Google Scholar 

  53. Park H-M, Ha C-S (2010) Barrier properties biodegradable nanocomposites. Barrier properties of polymer clay nanocomposites, pp 231–256

    Google Scholar 

  54. Cabedo L, Feijoo JL, Villanueva MP, Lagaron JM, Giménez E (2006) Optimization of biodegradable nanocomposites based on PLA/PCL blends for food packaging applications. Macromol Symp 233:191–197

    Article  CAS  Google Scholar 

  55. Yano K, Usuki A, Okada A (1997) Synthesis and properties of polyimide-clay hybrid films. J Polym Sci A Polym Chem 35(11):2289–2294

    Article  CAS  Google Scholar 

  56. Holmes PA (1985) Applications of PHB—a microbially produced biodegradable thermoplastic. Phys Technol 16(1):32–36

    Article  CAS  Google Scholar 

  57. Pouton CW, Akhtar S (1996) Biosynthetic polyhydroxyalkanoates and their potential in drug delivery. Adv Drug Deliv Rev 18(2):133–162

    Article  CAS  Google Scholar 

  58. Byrom D (1993) The synthesis and biodegradation of polyhydroxyalkanoates from bacteria. Int Biodeterior Biodegradation 31(3):199–208

    Article  CAS  Google Scholar 

  59. Inoue Y, Yoshie N (1992) Structure and physical properties of bacterially synthesized polyesters. Prog Polym Sci 17(4):571–610

    Article  CAS  Google Scholar 

  60. Doi Y (1995) Microbial synthesis, physical properties, and biodegradability of polyhydroxyalkanoates. Macromol Symp 98:585–599

    Article  CAS  Google Scholar 

  61. Verhoogt H, Ramsay BA, Favis BD (1994) Polymer blends containing poly(3-hydroxyalkanoate)s. Polymer 35(24):5155–5169

    Article  CAS  Google Scholar 

  62. Miguel O, Egiburu JL, Iruin JJ (2001) Blends of bacterial poly(3-hydroxybutyrate) with synthetic poly(3-hydroxybutyrate) and poly(epichlorohydrin): transport properties of carbon dioxide and water vapor. P Polym 42(3):953–962

    CAS  Google Scholar 

  63. Abe H, Matsubara I, Doi Y, (1995) Physical properties and enzymic degradability of polymer blends of bacterial Poly[(R)-3-hydroxybutyrate] and Poly[(R,S)-3-hydroxybutyrate] stereoisomers. Macromolecules 28(4):844–853

    Google Scholar 

  64. Gonzalez A, Iriarte M, Iriondo PJ, Iruin JJ (2002) Miscibility and carbon dioxide transport properties of blends of bacterial poly(3-hydroxybutyrate) and a poly(vinylidene chloride-co-acrylonitrile) copolymer. Polymer 43(23):6205–6211

    Article  CAS  Google Scholar 

  65. Pankova YN, Shchegolikhin AN, Iordanskii AL, Zhulkina AL, Ol’khov AA, Zaikov GE (2010) The characterization of novel biodegradable blends based on polyhydroxybutyrate: the role of water transport. J Mol Liq 156:65–69

    Article  CAS  Google Scholar 

  66. Modi S, Koelling K, Vodovotz Y (2011) Assessment of PHB with varying hydroxyvalerate content for potential packaging applications. Eur Polymer J 47:179–186

    Article  CAS  Google Scholar 

  67. Lagaron JM, Catala R, Gavara R (2004) Structural characteristics defining high barrier properties in polymeric materials. Mater Sci Technol 20(1):1–7

    Article  CAS  Google Scholar 

  68. Lagaron JM, Cabedo L, Cava D, Feijoo JL, Gavara R, Gimenez E (2005) Improving packaged food quality and safety. Part 2: Nanocomposites. Food Addit Contam 22(10):994–998

    Article  CAS  Google Scholar 

  69. Sanchez-Garcia MD, Gimenez E, Lagaron JM (2008) Morphology and barrier properties of nanobiocomposites of poly(3-hydroxybutyrate) and layered silicates. J Appl Polym Sci 108(5):2787–2801

    Article  CAS  Google Scholar 

  70. Song J, Ren M, Song C, Wang S, Zhang H, Mo Z (2004) The effect of 60Co y-rays on the crystal structure, melting and crystallization behavior of poly(butylene succinate). Polym Int 53(11):1773–1779

    Article  CAS  Google Scholar 

  71. Fujimaki T, Harigaya N (1993) Development of biodegradable plastics Bionolle. Seikei Kako 5(1):36–41

    Article  CAS  Google Scholar 

  72. Ishioka D (2002) Biopolymers, polyesters III. applications and commercial products, vol. 4. Wiley-VCH Verlag Gmbh, Weinheim, p 275

    Google Scholar 

  73. Nikolic MS, Djonlagic J (2001) Synthesis and characterization of biodegradable poly(butylene succinate-co-butylene adipate)s. Polym Degrad Stab 74(2):263–270

    Article  CAS  Google Scholar 

  74. Fujimaki T (1998) Processability and properties of aliphatic polyesters, “Bionolle”, synthesized by polycondensation reaction. Polym Degrad Stab 59(1–3):209–214

    Article  CAS  Google Scholar 

  75. Werpy T, Frye J, Holladay J (2006) Succinic acid e a model building block for chemical synthesis from renewable resources. In: Kamm JB, Gruber PR, Kam M (eds) Biorefineries e industrial processess and products: status quo and future directions, vol 1. WileyeVCH, Weinheim

    Google Scholar 

  76. Song H, Lee SY (2006) Production of succinic acid by bacterial fermentation. Enzym Microb Technol 39(3):352–361

    Article  CAS  Google Scholar 

  77. Dornburg V, Hermann BG, Patel MK (2008) Scenario projections for future market potentials of biobased bulk chemicals. Environ Sci Technol 42(7):2261–2267

    Article  CAS  Google Scholar 

  78. Caesar B (2008) Industrial biotechnology: more than just ethanol—factors driving industry growth. Ind Biotechnol 4(1):50–54

    Article  Google Scholar 

  79. Huang X, Li C, Zheng L, Zhang D, Guan G, Xiao Y (2009) Synthesis, characterization and properties of biodegradable poly(butylene succinate)-block-poly(propylene glycol) segmented copolyesters. Polym Int 58(8):893–899

    Article  CAS  Google Scholar 

  80. Papageorgiou GZ, Bikiaris DN (2005) Crystallization and melting behavior of three biodegradable poly(alkylene succinates). comp study Polym 46(26):12081–12092

    CAS  Google Scholar 

  81. Liu Y, Ranucci E, Lindblad MS, Albertsson A-C (2001) New biodegradable polymers from renewable sources: polyester-carbonates based on 1,3-propylene-co-1,4-cyclohexanedimethylene succinate. J Polym Sci A Polym Chem 39(14):2508–2519

    Article  CAS  Google Scholar 

  82. Shih YF, Wang TY, Jeng RJ, Wu JY, Wuu DS (2008) Crosslinked and uncross-linked biodegradable nanocomposites. I. Nonisothermal crystallization kinetics and gas permeability. J Appl Polym Sci 110(2):1068–1079

    Article  CAS  Google Scholar 

  83. Phua YJ, Chow WS, Ishak ZAM (2011) Poly(butylene succinate)/Organo-montmorillonite nanocomposites: effects of the organoclay content on mechanical, thermal, and moisture absorption properties. J Thermoplast Compos Mater 24(1):133–151

    Article  CAS  Google Scholar 

  84. Zenga J-B, Jiao L, Li Y-D, Srinivasan M, Li T, Wanga Y-Z (2011) Bio-based blends of starch and poly(butylene succinate) with improved miscibility, mechanical properties, and reduced water absorption. Carbohydr Polym 83:762–768

    Article  Google Scholar 

  85. Dean K, Yu L, Bateman S, Wu DY (2007) Gelatinized starch/biodegradable polyester blends: processing, morphology, and properties. J Appl Polym Sci 103(2):802–811

    Article  CAS  Google Scholar 

  86. John J, Mani R, Bhattacharya M (2002) Evaluation of compatibility and properties of biodegradable polyester blends. J Polym Sci A Polym Chem 40(12):2003–2014

    Article  CAS  Google Scholar 

  87. Okamoto K, Sinha Ray S, Okamoto M (2003) New poly(butylene succinate)/layered silicate nanocomposites. Part II. Effect of organically modified layered silicates on structure, properties, melt rheology, and biodegradability. J Polym Sci B Polym Phys 41(24):3160–3172

    Google Scholar 

  88. Chen G-X, Kim H-S, Yoon J-S (2007) Synthesis and characterization of poly(butylene succinate)/epoxy group functionalized organoclay. Polym Int 56(9):1159–1165

    Article  CAS  Google Scholar 

  89. Chen G-X, Yoon J-S (2005) Nonisothermal crystallization kinetics of poly(butylene succinate) composites with a twice functionalized organoclay. J Polym Sci B Polym Phys 43(7):817–826

    Article  CAS  Google Scholar 

  90. Chen G-X, Kim E-S, Yoon J-S (2005) Poly(butylene succinate)/twice functionalized organoclay nanocomposites: preparation, characterization, and properties. J Appl Polym Sci 98(4):1727–1732

    Article  CAS  Google Scholar 

  91. Messersmith PB, Giannelis EP (1995) Synthesis and barrier properties of poly(ε-Capro1actone)-layered silicate nanocomposites. J Polym Sci A Polym Chem 33:1047–1057

    Article  CAS  Google Scholar 

  92. Gorrasi G, Tortora M, Vittoria V, Pollet E, Lepoittevin B, Alexandre M, Dubois P (2003) Vapor barrier properties of polycaprolactone montmorillonite nanocomposites: effect of clay dispersion. Polymer 44:2271–2279

    Article  CAS  Google Scholar 

  93. Gorrasi G, Tortora M, Vittoria V, Pollet E, Alexandre M, Dubois P (2004) Physical properties of poly(ε-caprolactone) layered silicate nanocomposites prepared by controlled grafting polymerization. J Polym Sci B Polym Phys 42:1466–1475

    Article  CAS  Google Scholar 

  94. Gain O, Espuche E, Pollet E, Alexandre M, Dubois P (2005) Gas barrier properties of poly(ε-caprolactone)/clay nanocomposites: influence of the morphology and polymer/clay interactions. J Polym Sci B Polym Phys 43:205–214

    Article  CAS  Google Scholar 

  95. Di Y, Iannace S, Sanguigno L, Nicolais L (2005) Barrier and mechanical properties of poly(caprolactone)/orgnoclay nanocomposites. Macromol Symp 228:115–124

    Article  CAS  Google Scholar 

  96. Cava D, Giménez E, Gavara R, Lagaron JM (2006) Comparative performance and barrier properties of biodegradable thermoplastics and nano bio composites versus PET for food packaging applications. J Plast Film Sheeting 22(4):265–274

    Article  CAS  Google Scholar 

  97. Sanchez-Garcia MD, Ocio MJ, Gimenez E, Lagaron JM (2008) Novel Polycaprolactone nanocomposites containing thymol of interest in antimicrobial film and coating applications. J Plast Film Sheeting 24:3–4

    Article  Google Scholar 

  98. Shafiei Sabet S, Katbab AA (2009) Interfacially Compatibilized Poly(lactic acid) and Poly(lactic acid)/Polycaprolactone/Organoclay nanocomposites with improved biodegradability and barrier properties: effects of the compatibilizer structural parameters and feeding route. J Appl Polym Sci 111:1954–1963

    Article  Google Scholar 

  99. Vertuccio L, Gorrasi G, Sorrentino A, Vittoria V (2009) Nano clay reinforced PCL/starch blends obtained by high energy ball milling. Carbohydr Polym 75:172–179

    Article  CAS  Google Scholar 

  100. Benali S, Olivier A, Brocorens P, Bonnaud L, Alexandre M, Bourbigot S, Espuche E, Gouanve F, Lazzaroni R, Dubois P (2008) Fire and gas barrier properties of poly(styrene-co-acrylonitrile) nanocomposites using polycaprolactone/clay nanohybrid based-masterbatch. Adv Mater Sci Eng Article ID 394235, p 11 doi:10.1155/2008/394235

  101. Sorrentino A, Gorrasi G, Tortora M, Vittoria V, Costantino U, Marmottini F, Padella F (2005) Incorporation of Mg-Al hydrotalcite into a biodegradabile poly(ε-caprolactone) by high energy ball milling. Polymer 46:1601–1608

    Article  CAS  Google Scholar 

  102. Bugatti V, Costantino U, Gorrasi G, Nocchetti M, Tammaro L, Vittoria V (2010) Nano-hybrids incorporation into poly(e-caprolactone) for multifunctional applications: mechanical and barrier properties. Eur Polymer J 46:418–427

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Sorrentino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London

About this chapter

Cite this chapter

Sorrentino, A., Gorrasi, G., Vittoria, V. (2012). Permeability in Clay/Polyesters Nano-Biocomposites. In: Avérous, L., Pollet, E. (eds) Environmental Silicate Nano-Biocomposites. Green Energy and Technology. Springer, London. https://doi.org/10.1007/978-1-4471-4108-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-4108-2_9

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-4101-3

  • Online ISBN: 978-1-4471-4108-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics