Skip to main content

The Molecular Basis of Joint Hypermobility

  • Chapter
Hypermobility of Joints

Abstract

The ability of joints to undergo repeated and rapid movements is attributable to the unique mechanical properties of the extracellular matrix (ECM) of the joint capsule and surrounding ligaments and tendons. A delicate balance exists between “stiffness” and “elasticity” of these tissues. Stiffness comes from very long collagen fibrils, which are arranged in parallel bundles in the ECM. These fibrils resist pulling forces and are the primary source of the mechanical strength of tissues. Elasticity originates from the crimping of collagen fibrils, but mostly, from the fibrillin- and elastin-containing microfibrils in the ECM. These elastic fibres have an unique arrangement of macromolecules that permits extension and contraction at a molecular level. An understanding of the molecular and structural basis of joint hypermobility requires a detailed knowledge of the structure, function and organisation of the collagenous and elastic polymer systems that comprise the ECM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Ayad S, Boot-Handford RP, Humphries MJ, Kadler KE, Shuttleworth, CA (1988) The extracellular matrix. In: The Facts Book Series. Academic Press, London

    Google Scholar 

  • Birk DE, Trelstad RL (1986) Extracellular compartments in tendon morphogenesis — collagen fibril, bundle, and macroaggregate formation. J Cell Biol 102: 231–240

    Article  Google Scholar 

  • Birk DE, Zycband EI, Winkelmann DA, Trelstad RL (1989) Collagen fibrillogenesis in situ — fibril segments are intermediates in matrix assembly. Proc Natl Acad Sci USA 86: 4549–4553

    Article  PubMed  CAS  Google Scholar 

  • Burrows NP, Nicholls AC, Yates JRW, Gatward G, Sarathachandra P, Richards A, Pope FM (1996) The gene encoding collagen α1(V) (COL5A1) is linked to mixed Ehlers-Danlos syndrome type I/II. J Invest Dermatol 106: 1273–1276

    Article  PubMed  CAS  Google Scholar 

  • Byers PH (1989) Disorders of collagen biosynthesis and structure. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic basis of inherited disease, 6th edn. McGraw-Hill Publishing Co., New York, pp.2805–2842

    Google Scholar 

  • Byers P H, Duvic M, Atkinson M et al. (1997) Ehlers-Danlos syndrome type VIIA and VIIB result from splice-junction mutations or genomic deletions that involve exon 6 in the COL1A1 and COL1A2 genes of type I collagen. Am J Med Genet 72: 94–105

    Article  PubMed  CAS  Google Scholar 

  • Chiodo AA, Hockey A, Cole WG (1992) A base substitution at the splice acceptor site of intron 5 of the COL1A2 gene activates a cryptic splice within exon 6 and generates abnormal type I procollagen in a patient with Ehlers-Danlos syndrome type VII. J Biol Chem 267: 6361–6369

    PubMed  CAS  Google Scholar 

  • Cole WG, Chan D, Chambers GW, Walker ID, Bateman JF (1986) Deletion of 24 amino acids from the proal(I) chain of type I procollagen in a patient with the Ehlers-Danlos syndrome type VII. J Biol Chem 261: 5496–5503

    PubMed  CAS  Google Scholar 

  • Colige A, Beschin A, Samyn B, Goebels Y, Beeumen JV, Nusgens BV, Lapière CM (1995) Characterisation and partial amino acid sequencing of a 107-kDa procollagen I N-proteinase purified by affinity chromatography on immobilised type XIV collagen. J Biol Chem 270: 16724–16730

    Article  PubMed  CAS  Google Scholar 

  • Colige A, Li S-W, Sieron AL, Nusgens BV, Prockop DJ, Lapière CM (1997) cDNA cloning and expression of bovine procollagen I N-proteinase: a new member of the superfamily of zinc metallopro-teinases with binding sites for cells and other matrix components. Proc Natl Acad Sci USA 94:2374–2379

    Article  PubMed  CAS  Google Scholar 

  • Colige A, Li SW, Sieron AL, Cohn DH, Byers P, Prockop DJ, Lapière CM, Nusgens BV (1998) Ehlers-Danlos type VIIC in human and dermatosparaxis in cattle are caused by mutations in the procollagen I amino-peptidase gene. J Invest Dermatol 110: 502.

    Google Scholar 

  • Counts DR, Byers PH, Holbrook KA, Hegreberg GA (1980) Dermatosparaxis in a Himlayan cat: 1, Biochemical studies of dermal collagen. J Invest Dermatol 74: 96–99

    Article  PubMed  CAS  Google Scholar 

  • Culbert AA, Lowe MP, Atkinson M, Byers PH, Wallis GA, Kadler KE (1995) Substitutions of aspartic acid for glycine 220 and arginine for glycine 664 in the triple helix of the proα1(I) chain of Type I procollagen produce lethal osteogenesis imperfecta and disrupt the ability of collagen fibrils to incorporate crystalline hydroxyapatite. Biochem J 311: 815–820

    PubMed  CAS  Google Scholar 

  • D’Alessio M, Ramirez F, Blumberg BD, Wortz MK, Rao VH, Godfrey MD, Hollister DW (1991) Characterisation of a COL1A1 splicing defect in a case of Ehlers-Danlos syndrome type VII: further evidence of molecular homogeneity. Am J Hum Genet 49: 400–406

    PubMed  Google Scholar 

  • De Paepe A, Nuytinck L, Hausser I, Anton-Lamprecht I, Naeyaert J-M (1997) Mutations in the COL5A1 gene are causal in the Ehlers-Danlos syndromes I and II. Am J Hum Genet 60: 547–554

    PubMed  Google Scholar 

  • Dietz HC, Pyeritz RE (1995) Mutations in the human gene for fibrillin-1 (FBN1) in the Marfan syndrome and related disorders. Hum Mol Genet 4: 1799–1809

    PubMed  CAS  Google Scholar 

  • Eyre D R, Shapiro FD, Aldridge JF (1985). A heterozygous collagen defect in a variant of the Ehlers-Danlos syndrome type VII. J Biol Chem 260: 11322–11329

    PubMed  CAS  Google Scholar 

  • Fjolstad M, Helle O (1974) A hereditary dysplasia of connective tissues in sheep. J Pathol 112: 183–188

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto A, Wilcox WR, Cohn DH (1997) Clinical, morphological, and biochemical phenotype of a new case of Ehlers-Danlos syndrome type VIIC. Am J Med Genet 68: 25–28

    Article  PubMed  CAS  Google Scholar 

  • Greenspan DS, Byers MG, Eddy RI, Cheng W, Janisait S (1992) Human collagen gene COL5A1 maps to the q34.2-q34.3 region of chromosome 9, near the locus for nail-patella symdrome. Genomics 12: 836–837

    Article  PubMed  CAS  Google Scholar 

  • Hedbom E, Heinegard D (1989) Interaction of a 59-kDa connective tissue matrix protein with colla-gen-I and Collagen-II AU. J Biol Chem 264: 6898–6905

    PubMed  CAS  Google Scholar 

  • Holbrook KA, Byers PH, Counts DF, Hegreberg GA (1980). Dermatosparaxis in a Himalayan cat. II Ultrastructural studies of dermal collagen. J Invest Dermatol 74: 100–104

    Article  PubMed  CAS  Google Scholar 

  • Holmes DF, Chapman JA, Prockop DJ, Kadler KE (1992) Growing tips of type I collagen fibrils formed in vitro are near-paraboloidal in shape, implying a reciprocal relationship between accretion and diameter. Proc Natl Acad Sc. USA 89: 9855–9859

    Article  CAS  Google Scholar 

  • Holmes DF, Watson RB, Steinmann B, Kadler KE (1993) Ehlers-Danlos syndrome type VIIB. Morphology of type I collagen fibrils is determined by the conformation of the N-propeptide. J Biol Chem 268: 15758–15765

    PubMed  CAS  Google Scholar 

  • Holmes DF, Graham HK, Kadler KE (1998) Collagen fibrils forming in developing tendon show an early and abrupt limitation in diameter at the growing tips unobserved in cell-free systems. J Mol Biol, 283: 1049–1058

    Article  PubMed  CAS  Google Scholar 

  • Hulmes DJS, Kadler KE, Mould AP, Hojima Y, Holmes DF, Cummings C, Chapman JA, Prockop DJ (1989) Pleomorphism in type I collagen fibrils produced by persistence of the procollagen N-propeptide. J Mol Biol 210: 337–345

    Article  PubMed  CAS  Google Scholar 

  • Kadler KE, Hojima Y, Prockop DJ (1987) Assembly of collagen fibrils de novo by enzymic cleavage of the type I pCcollagen by procollagen C-proteinase. Assay of critical concentration demonstrates that the process is an example of classical entropy-driven self assembly. J Biol Chem 262: 15696–15701

    PubMed  CAS  Google Scholar 

  • Kadler KE, Holmes DF, Trotter J, Chapman JA (1996) Collagen fibril formation. Biochem J 316: 1–11

    PubMed  CAS  Google Scholar 

  • Kainulainen K, Karttunen L, Puhakka L, Sakai L, Peltonen L (1994) Mutations in the fibrillin gene responsible for dominant ectopia lentis and neonatal Marfan syndrome. Nature Genet 6: 64–69

    Article  PubMed  CAS  Google Scholar 

  • Kessler E, Takahara K, Biniaminov L, Brusel M, Greenspan DS (1996) Bone morphogenetic protein-I: the type I procollagen C-proteinase. Science 271: 360–362

    Article  PubMed  CAS  Google Scholar 

  • Lee B, Godfrey M, Vitale E, Hori H, Mattei MG, Sarfarazi M, Tsipouras P, Ramirez F, Hollister DW (1991) Linkage of Marfan syndrome and a phenotypically related disorder to two different fibrillin genes. Nature 352: 330–334

    Article  PubMed  CAS  Google Scholar 

  • Lees JF, Tasab M, Bulleid NJ (1997) Identification of the molecular recognition sequence which determines the type-specific assembly of procollagen. EMBO J 16: 908–916

    Article  PubMed  CAS  Google Scholar 

  • Lenaers A, Ansay M, Nusgens BV, Lapière CM (1971) Collagen made of extended α-chains, procollagen, in genetically-defective dermatosparactic calves. Eur J Biochem 23: 533–543

    Article  PubMed  CAS  Google Scholar 

  • Li SW, Sieron AL, Fertala A, Hojima Y, Arnold WV, Prockop DJ (1987) The C-proteinase that processes procollagens to fibrillar collagens is identical to the protein previously identified as bone morphogenic protein-1. Proc Natl Acad Sci USA 93: 5127–5130

    Article  Google Scholar 

  • Lichtenstein JR, Martin GR, Kohn LD, Byers PH, McKusick VA (1973) Defect in conversion of procollagen to collagen in a form of Ehlers-Danlos syndrome. Science 182: 298–299

    Article  PubMed  CAS  Google Scholar 

  • Loughlin J, Irven C, Hardwick LJ, Butcher S, Walsh S, Wordsworth P, Sykes B (1995) Linkage of the gene that encodes the alpha-lchain of type V collagen (COL5A1) to type II Ehlers-Danlos syndrome (EDS II). Hum Mol Genet 4: 1649–1651

    Article  PubMed  CAS  Google Scholar 

  • Michalickova K, Susic M, Willing MC, Wenstrup RJ, Cole WG (1998) Mutations of the α2(V) chain of type V collagen impair matrix assembly and produce Ehlers-Danlos syndrome type I. Hum Mol Genet 7: 249–255

    Article  PubMed  CAS  Google Scholar 

  • Moradi-Ameli M, Rousseau JC, Kleman JP, Champliaud MF, Boutillon MM, Bernillon J, Wallach J, van der Rest M (1994) Diversity in the processing events at the N-terminus of type V collagen. Eur J Biochem 221: 987–995

    Article  PubMed  CAS  Google Scholar 

  • Myers JC, Dion AS (1990) Types III and V procollagens: homology in genetic organisation and diversity in structure. In: Sandeil LJ, Boyd CD (eds) Extracellular matrix genes. Academic Press, New York, pp. 57–78

    Google Scholar 

  • Nicholls AC, Oliver J, Renouf DV, McPheat J, Palan A, Pope FM (1991). Ehlers-Danlos syndrome type VII: a single base change that causes exon skipping in the type I collagen 2(1) chain. Hum Genet 87: 193–198

    Article  PubMed  CAS  Google Scholar 

  • Nusgens BV, Verellendumoulin C, Hermannsle T, Depaepe A, Nuytinck L, Pierard GE, Lapière CM (1992) Evidence for a relationship between Ehlers-Danlos type VIIC in humans and bovine dermatosparaxis. Nature Genet 1: 214–217

    Article  PubMed  CAS  Google Scholar 

  • Petty EM, Seashore MR, Braverman IM, Spiesel SZ, Smith LT, Milstone LM (1993) Dermatosparaxis in children-a case-report and review of the newly recognized phenotype. Arch Dermatol 129: 1310–1315

    Article  PubMed  CAS  Google Scholar 

  • Pierard G E, Hermannsle T, Arreseestrada J, Pierardfranchimont C, Lapière CM (1993) Structure of the dermis in type VIIC Ehlers-Danlos Syndrome. Am J Dermatopathol 15: 127–132

    Article  PubMed  CAS  Google Scholar 

  • Putnam EA, Zhang H, Ramirez F, Milewicz DM (1995) Fibrillin-2 (FBN2) mutations result in the Marfan-like disorder, congenital contractural arachnodactyly. Nature Genet 11: 456–458

    Article  PubMed  CAS  Google Scholar 

  • Sakai LY, Keene DR, Engvall E (1986) Fibrillin, a new 350 kDa glycoprotein, is a component of extracellular microfibrils. J Cell Biol 103: 2499–2509

    Article  PubMed  CAS  Google Scholar 

  • Smith LT, Wertelecki W, Milstone LM, Petty EM, Seashore MR, Braverman IM, Jenkins TG, Byers PH (1992) Human dermatosparaxis — a form of Ehlers-Danlos syndrome that results from failure to remove the amino-terminal propeptide of type I procollagen. Am J Hum Genet 51: 235–244

    PubMed  CAS  Google Scholar 

  • Steinmann B, Tuderman L, Peltonen L, Martin GR, McKusick VA, Prockop DJ (1980) Evidence for a structural mutation of procollagen type I in a patient with the Ehlers-Danlos syndrome type VII. J Biol Chem 255: 8887–8893

    PubMed  CAS  Google Scholar 

  • Takahara K, Hoffman GG, Greenspan DS (1995) Complete structural organisation of the human α1(V) collagen gene (COL5A1) — divergence from the conserved organisation of other characterised fibrillar collagen genes. Genomics 29: 588–597

    Article  PubMed  CAS  Google Scholar 

  • Vasan NS, Kuivaniemi H, Vogel BE, Minor RR, Wootton JAM, Tromp G, Weksberg R, Prockop DJ (1991). A mutation in the proα(I) gene (COL1A2) for type I procollagen in Ehlers-Danlos syndrome type VII: evidence suggesting that skipping of exon 6 in RNA splicing may be a common cause of the phenotype. Am J Hum Genet 48: 305–317

    PubMed  CAS  Google Scholar 

  • Vogel KG, Heinegard D (1985) Characterization of proteoglycans from adult bovine tendon. J Biol Chem 260: 9298–9306

    PubMed  CAS  Google Scholar 

  • Watson RB, Wallis GA, Holmes DF, Viljoen D, Byers PH, Kadler KE (1992) Ehlers-Danlos syndrome type VIIB. Incomplete cleavage of the patient’s abnormal type I procollagen by N-proteinase results in the formation of rough-bordered collagen fibrils characteristic of the disorder. J Biol Chem 267: 9093–9100

    PubMed  CAS  Google Scholar 

  • Watson RB, Holmes DF, Graham HK, Nusgens BV, Kadler KE (1998) Surface-located procollagen N-propeptides on dermatosparactic collagen fibrils are not cleaved by procollagen N-proteinase and do not inhibit binding of decorin to the fibril surface. J Mol Biol 278: 195–204

    Article  PubMed  CAS  Google Scholar 

  • Weil D, Bernard M, Combates N, Wirtz MK, Hollister D, Steinmann B, Ramirez F (1988) Identification of a mutation that causes exon skipping during collagen pre-mRNA splicing in an Ehlers-Danlos syndrome variant. J Biol Chem 263: 8561–8564

    PubMed  CAS  Google Scholar 

  • Weil D, D’Alessio M, Ramirez F, de Wet W, Cole WG, Chan D, Bateman JF (1989a) A base substitution in the exon of a collagen gene causes alternative splicing and generates a structurally abnormal polypeptide in a patient with Ehlers-Danlos syndrome type VII. EMBO J 8: 1705–1710

    PubMed  CAS  Google Scholar 

  • Weil D, D’Alessio M, Ramirez F, Steinmann B, Wirtz MK, Glanville RW, Hollister DW (1989b) Temperature-dependent expression of a collagen splicing defect in the fibroblasts of a patient with Ehlers-Danlos syndrome type VII. J Biol Chem 264: 16 804–16 809.

    CAS  Google Scholar 

  • Weil D, D’Alessio M, Ramirez F, de Wet W, Cole WG, Chan D, Bateman JF (1989c) A base substitution in the exon of a collagen gene causes alternative splicing and generates a structurally abnormal polypeptide in a patient with Ehlers-Danlos syndrome type VII. EMBO J 8: 1705–1710

    PubMed  CAS  Google Scholar 

  • Weil D, D’Alessio M, Ramirez F, Eyre DR (1990) Structural and functional characterization of a splicing mutation in the pro α2(I) collagen gene of an Ehlers-Danlos type VII patient. J Biol Chem 265: 16 007–16 011

    CAS  Google Scholar 

  • Wenstrup RJ, Langland GT, Willing MC, D’Souza VN, Cole W G (1996a) A splice-junction mutation in the region of COL5A1 that codes for the carboxyl propeptide of pro α1(V) chains results in the gravis form of the Ehlers-Danlos syndrome (type I). Hum Mol Genet 5: 1733–1736

    Article  PubMed  CAS  Google Scholar 

  • Wenstrup RJ, Langland GT, Willing MC, D’Souza VN, Cole WG (1996b) A splice-junction mutation in the region of COL5A1 that codes for the carboxyl propeptide of procd(V) chains results in the gravis form of the Ehlers-Danlos syndrome (type I). Hum Mol Genet 5: 1733–1736

    Article  PubMed  CAS  Google Scholar 

  • Wertelecki W, Smith LT, Byers PH (1992) Initial observations of human dermatosparaxis-Ehlers-Danlos syndrome type VIIC. J Pediatr 121: 558–564

    Article  PubMed  CAS  Google Scholar 

  • Wirtz MK, Glanville RW, Steinmann B, Rao VH, Hollister DW (1987) Ehlers-Danlos syndrome type VIIB — deletion of 18 amino-acids comprising the N-telopeptide region of a proα2(I) chain. J Biol Chem 262: 16 376–16 385

    CAS  Google Scholar 

  • Wirtz MK, Keene DR, Hori H, Glanville RW, Steinmann B, Rao VH, Hollikster DW (1990). In vivo and in vitro noncovalent association of excised α1 (I) amino-terminal propeptides with mutant pNα2(I) collagen chains in native mutant collagen in a case of Ehlers-Danlos syndrome, type VII. J Biol Chem 265: 6312–6317

    PubMed  CAS  Google Scholar 

  • Zhang H, Apfelroth SD, Hu W, Davis EC, Sanguined C, Bonadio J, Mecham RP, Ramirez F (1994) Structure and expression of fibrillin-2, a novel microfibrillar component located in elastic matrices. J Cell Biol 124: 855–863

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Hu W, Ramirez F (1995) Developmental expression of fibrillin genes suggests heterogeneity of extracellular microfibrils. J Cell Biol 129: 1165–1176

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag London

About this chapter

Cite this chapter

Kadler, K., Wallis, G. (1999). The Molecular Basis of Joint Hypermobility. In: Hypermobility of Joints. Springer, London. https://doi.org/10.1007/978-1-4471-3633-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-3633-0_3

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-3635-4

  • Online ISBN: 978-1-4471-3633-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics