Skip to main content

Coronary Artery Disease: Regulation of Coronary Blood Flow

  • Chapter
  • First Online:
Coronary Artery Disease

Part of the book series: Cardiovascular Medicine ((CVM))

Abstract

In the normal coronary circulation multiple redundant endothelium-independent and endothelium-dependent mechanisms act together to adjust blood flow in response to changing myocardial O2 requirements on a beat-to-beat basis. This metabolic vasoregulation is a function of the coronary arterioles which are responsive to the energetic state of the myocardium. Coronary arteries do not respond directly to myocardial metabolic needs, but dilate when increased blood flow produced by arteriolar dilation increases endothelial shear and triggers nitric oxide (NO) production. Atherosclerosis or risk factors for atherosclerosis cause endothelial dysfunction as a result of increased production of oxygen free radicals that consume NO and impair endothelium-dependent vasodilation. Stenotic lesions of the epicardial arteries impair vasodilator reserve and can result in exercise-induced myocardial ischemia or, if sufficiently severe, can reduce resting coronary flow to produce unstable angina or myocardial infarction. In the setting of occlusive coronary artery disease, growth of collateral vessels can provide an alternate blood supply to protect the dependent myocardium from ischemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Duncker DJ, Bache RJ. Regulation of coronary blood flow during exercise. Physiol Rev. 2008;88:1009–86.

    Article  CAS  PubMed  Google Scholar 

  2. Taegtmeyer H, Wilson CR, Razeghi P, Sharma S. Metabolic energetics and genetics in the heart. Ann N Y Acad Sci. 2005;1047:208–18.

    Article  CAS  PubMed  Google Scholar 

  3. Vatner W. Correlation between acute reductions in myocardial blood flow and function in conscious dogs. Circ Res. 1980;47:201–7.

    Article  CAS  PubMed  Google Scholar 

  4. Path G, Robitaille P-M, Merkle H, Tristani M, Zhang J, Garwood M, From AHL, Bache RJ, Ugurbil K. Correlation between transmural high energy phosphate levels and myocardial blood flow in the presence of graded coronary stenosis. Circ Res. 1990;67:660–73.

    Article  CAS  PubMed  Google Scholar 

  5. Feigl EO, Rooke GA, Feigl EO. Work as a correlate of canine left ventricular oxygen consumption, and the problem of catecholamine oxygen wasting. Circ Res. 1982;50:273–86.

    Article  PubMed  Google Scholar 

  6. Feigl EO. Neural control of coronary blood flow. J Vasc Res. 1998;35:85–92.

    Article  CAS  PubMed  Google Scholar 

  7. Schwartz JS, Baran KW, Bache RJ. Effect of a stenosis on exercise-induced dilation of large coronary arteries. Am Heart J. 1990;119:520–4.

    Article  CAS  PubMed  Google Scholar 

  8. Laughlin MH, McAllister RM, Jasperse JL, Crader SE, Williams DA, Huxley VH. Endothelium-medicated control of the coronary circulation. Exercise training-induced vascular adaptations. Sports Med. 1996;22:228–50.

    Article  CAS  PubMed  Google Scholar 

  9. Gordon JB, Ganz P, Nabel EG, Fish RD, Zebeda J, Mudge GH, Alexander RW, Selwyn AP. Atherosclerosis influences the vasomotor response of epicardial coronary arteries to exercise. J Clin Invest. 1989;83:1946–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Brown BG, Bolson EL, Dodge HT. Dynamic mechanisms in human coronary stenosis. Circulation. 1984;70:917–22.

    Article  CAS  PubMed  Google Scholar 

  11. Schwartz JS, Bache RJ. Effect of arteriolar dilation on coronary artery diameter distal to coronary stenoses. Am J Physiol. 1985;249:H981–8.

    CAS  PubMed  Google Scholar 

  12. Gage JE, Hess OM, Murakami T, Ritter M, Grimm J, Krayenbuehl HP. Vasoconstriction of stenotic coronary arteries during dynamic exercise in patients with classic angina pectoris: reversibility by nitroglycerin. Circulation. 1986;73:865–76.

    Article  CAS  PubMed  Google Scholar 

  13. Jones CJH, DeFily DV, Patterson JL, Chilian WM. Endothelium-dependent relaxation competes with ∝1- and ∝2-adrenergic constriction in the canine epicardial coronary microcirculation. Circulation. 1993;87:1264–74.

    Article  CAS  PubMed  Google Scholar 

  14. Marcus ML, Chilian WM, Kanatsuka H, Dellsperger KC, Eastham CL, Lamping KG. Understanding the coronary circulation through studies at the microvascular level. Circulation. 1990;82:1–7.

    Article  CAS  PubMed  Google Scholar 

  15. Berne RM, Rubio R. Regulation of coronary blood flow. Adv Cardiol. 1974;12:303–17.

    CAS  PubMed  Google Scholar 

  16. Bache RJ, Dai X-Z, Schwartz JS, Homans DC. Role of adenosine in coronary vasodilation during exercise. Circ Res. 1988;62:846–53.

    Article  CAS  PubMed  Google Scholar 

  17. Duling BR, Klitzman B. Local control of microvascular function: role in tissue oxygen supply. Annu Rev Physiol. 1980;42:373–82.

    Article  CAS  PubMed  Google Scholar 

  18. Farias 3rd M, Gorman MW, Savage MV, Feigl EO. Plasma ATP during exercise: possible role in regulation of coronary blood flow. Am J Physiol Heart Circ Physiol. 2005;288:H1586–90.

    Article  CAS  PubMed  Google Scholar 

  19. Duncker DJ, van Zon NS, Altman JD, Pavek TJ, Bache RJ. Role of K+ ATP channels in coronary vasodilation during exercise. Circulation. 1993;88:1245–53.

    Article  CAS  PubMed  Google Scholar 

  20. Standen NB, Quayle JM, Davies NW, Brayden JE, Huang Y, Nelson MT. Hyperpolarizing vasodilators activate ATP-sensitive K+ channels in arterial smooth muscle. Science. 1989;245:177–80.

    Article  CAS  PubMed  Google Scholar 

  21. Kane GC, Liu XK, Yamada S, Olson TM, Terzic A. Cardiac KATP channels in health and disease. J Mol Cell Cardiol. 2005;38:937–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Kakkar R, Ye B, Stoller DA, Smelley M, Shi NQ, Galles K, Hadhazy M, Makielski JC, McNally EM. Spontaneous coronary vasospasm in KATP mutant mice arises from a smooth muscle-extrinsic process. Circ Res. 2006;98:682–9.

    Article  CAS  PubMed  Google Scholar 

  23. Porter VA, Bonev AD, Knot HJ, Heppner TJ, Stevenson AS, Kleppisch T, Lederer WJ, Nelson MT. Frequency modulation of Ca2+ sparks is involved in regulation of arterial diameter by cyclic nucleotides. Am J Physiol. 1998;274:C1346–55.

    CAS  PubMed  Google Scholar 

  24. Kuo L, Davis MJ, Chilian WM. Myogenic activity in isolated subepicardial and subendocardial coronary arterioles. Am J Physiol. 1988;255:H1558–62.

    CAS  PubMed  Google Scholar 

  25. Chilian WM, Eastham CL, Marcus ML. Microvascular distribution of coronary vascular resistance in beating left ventricle. Am J Physiol. 1986;251:H779–88.

    CAS  PubMed  Google Scholar 

  26. Dorbala S, Hassan A, Heinonen T, Schelbert HR, Di Carli MF, RAMPART Investigators. Coronary vasodilator reserve and Framingham risk scores in subjects at risk for coronary artery disease. J Nucl Cardiol. 2006;13:761–7.

    Article  PubMed  Google Scholar 

  27. Estes EH, Entman ML, Dixon HB, Hackel DB. The vascular supply of the left ventricular wall: anatomic observations, plus a hypothesis regarding acute events in coronary artery disease. Am Heart J. 1966;l71:58–67.

    Article  Google Scholar 

  28. Chilian WM. Microvascular pressures and resistances in the left ventricular subepicardium and subendocardium. Circ Res. 1991;69:561–70.

    Article  CAS  PubMed  Google Scholar 

  29. Ishibashi Y, Mizrahi J, Duncker DJ, Bache RJ. The nitric oxide donor ITF 1129 augments subendocardial blood flow during exercise-induced myocardial ischemia. J Cardiovasc Pharmacol. 1997;30:374–82.

    Article  CAS  PubMed  Google Scholar 

  30. Furchgott RF, Zawadski JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980;288:373–6.

    Article  CAS  PubMed  Google Scholar 

  31. Vanhoutte PM, Shimokawa H, Tang EH, Feletou M. Endothelial dysfunction and vascular disease. Acta Physiol (Oxf). 2009;196:193–222.

    Article  CAS  Google Scholar 

  32. Ignarro LJ. Physiology and pathophysiology of nitric oxide. Kidney Int Suppl. 1996;55:S2–5.

    CAS  PubMed  Google Scholar 

  33. Fulton D, Gratton JP, Sessa WC. Post-translational control of endothelial nitric oxide synthase: why isn’t calcium/calmodulin enough? J Pharmacol Exp Ther. 2001;299:818–24.

    CAS  PubMed  Google Scholar 

  34. Victor VM, Rocha M, Solá E, Bañuls C, Garcia-Malpartida K, Hernández-Mijares A. Oxidative stress, endothelial dysfunction and atherosclerosis. Curr Pharm Des. 2009;15:2988–3002.

    Article  CAS  PubMed  Google Scholar 

  35. Creager MA, Gallagher SJ, Girerd XJ, Coleman SM, Czau VJ, Cooke JP. L-arginine improves endothelium-dependent vasodilatation in hypercholesterolemic humans. J Clin Invest. 1992;90:1248–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. MacAllister RJ, Parry H, Kimoto M, Ogawa T, Russell RJ, Hodson H, Whitley G-St J, Vallance P. Regulation of nitric oxide synthesis by dimethylarginine dimethylaminohydrolase. Br J Pharmacol. 1996;119:1533–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Allan TJ, Pearson JD, Needham L. Thrombin-stimulated elevation of endothelial cell cytoplasmic free calcium concentration causes prostacyclin production. Biochem J. 1988;257:243–9.

    Google Scholar 

  38. García Rodríguez LA, González-Pérez A, Bueno H, Hwa J. NSAID use selectively increases the risk of non-fatal myocardial infarction: a systematic review of randomised trials and observational studies. PLoS One. 2011;6:e16780.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Félétou M, Vanhoutte PM. EDHF: an update. Clin Sci (Lond). 2009;16(117):139–55.

    Article  Google Scholar 

  40. Weiss HH, Neubauer JD, Lipp JD, Sinha AK. Quantitative determination of regional oxygen consumption in the dog heart. Circ Res. 1978;42:394–401.

    Article  CAS  PubMed  Google Scholar 

  41. Hess DS, Bache RJ. Transmural distribution of myocardial blood flow during systole in the awake dog. Circ Res. 1976;38:5–15.

    Article  CAS  PubMed  Google Scholar 

  42. Duncker DJ, Bache RJ. Regulation of coronary vasomotor tone under normal conditions and during acute myocardial hypoperfusion. Pharmacol Ther. 2000;86:87–110.

    Article  CAS  PubMed  Google Scholar 

  43. Baroldi G, Scomazzoni G. Coronary circulation in the normal and pathologic heart. Washington DC: Armed Forces Institute of Pathology; 1967.

    Google Scholar 

  44. Cohen M, Sherman W, Rentrop KP, Gorlin R. Determinants of collateral filling observed during sudden controlled coronary artery occlusion in human subjects. J Am Coll Cardiol. 1989;13:297–303.

    Article  CAS  PubMed  Google Scholar 

  45. Schwartz H, Leiboff RH, Bren GB, Wasserman AG, Katz RJ, Varghese PJ, Sokil AB, Ross AM. Temporal evolution of the human coronary collateral circulation after myocardial infarction. J Am Coll Cardiol. 1984;4:1088–93.

    Article  CAS  PubMed  Google Scholar 

  46. Chilian WM, Penn MS, Pung YF, Dong F, Mayorga M, Ohanyan V, Logan S, Yin L. Coronary collateral growth–back to the future. J Mol Cell Cardiol. 2012;52:905–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Heil M, Eitenmüller I, Schmitz-Rixen T, Schaper W. Arteriogenesis versus angiogenesis: similarities and differences. J Cell Mol Med. 2006;10:45–55.

    Article  CAS  PubMed  Google Scholar 

  48. Schaper W. Collateral circulation: past and present. Basic Res Cardiol. 2009;104:5–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Heaps CL, Parker JL. Effects of exercise training on coronary collateralization and control of collateral resistance. J Appl Physiol. 2011;111:587–98.

    Article  PubMed Central  PubMed  Google Scholar 

  50. Bache RJ, Schwartz JS. Myocardial blood flow during exercise after gradual coronary occlusion in the dog. Am J Physiol. 1983;245(Heart Circ Physiol 14):131–8.

    Google Scholar 

  51. Foreman BW, Dai XZ, Bache RJ. Vasoconstriction of canine coronary collateral vessels with vasopressin limits blood flow to collateral-dependent myocardium during exercise. Circ Res. 1991;69:657–64.

    Article  CAS  PubMed  Google Scholar 

  52. Pupita G, Maseri A, Kaski JC, Galassi AR, Gavrielides S, Davies G, Crea F. Myocardial ischemia caused by distal coronary-artery constriction in stable angina pectoris. N Engl J Med. 1990;323:514–20.

    Article  CAS  PubMed  Google Scholar 

  53. Imball BP, LiPreti V, Bui S, Wigle EG. Comparison of proximal left anterior descending and circumflex coronary artery dimensions in aortic valve stenosis and hypertrophic cardiomyopathy. Am J Cardiol. 1990;65:767–71.

    Article  Google Scholar 

  54. Duncker DJ, Zhang J, Pavek TJ, Crampton MJ, Bache RJ. Effect of exercise on the coronary pressure-flow relationship in the hypertrophied left ventricle. Am J Physiol. 1995;269(Heart Circ Physiol 38):H271–81.

    CAS  PubMed  Google Scholar 

  55. Duncker DJ, Ishibashi Y, Bache RJ. Effect of treadmill exercise on transmural distribution of blood flow in hypertrophied left ventricle. Am J Physiol. 1998;275:H1274–82.

    CAS  PubMed  Google Scholar 

  56. Camici PG, Olivotto I, Rimoldi OE. The coronary circulation and blood flow in left ventricular hypertrophy. J Mol Cell Cardiol. 2012;52:857–64.

    Article  CAS  PubMed  Google Scholar 

  57. Ball RM, Bache RJ. Distribution of myocardial blood flow in the exercising dog with restricted coronary artery inflow. Circ Res. 1976;38:60–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Bache MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag London

About this chapter

Cite this chapter

Bache, R.J. (2015). Coronary Artery Disease: Regulation of Coronary Blood Flow. In: Willerson, J., Holmes, Jr., D. (eds) Coronary Artery Disease. Cardiovascular Medicine. Springer, London. https://doi.org/10.1007/978-1-4471-2828-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2828-1_4

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-2827-4

  • Online ISBN: 978-1-4471-2828-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics