Skip to main content

Scale Space Representations Locally Adapted to the Geometry of Base and Target Manifold

  • Chapter
  • First Online:
  • 1590 Accesses

Part of the book series: Computational Imaging and Vision ((CIVI,volume 41))

Abstract

We generalize the Gaussian multi-resolution image paradigm for a Euclidean domain to general Riemannian base manifolds and also account for the codomain by considering the extension into a fibre bundle structure. We elaborate on aspects of parametrization and gauge, as these are important in practical applications. We subsequently scrutinize two examples that are of interest in bio-mathematical modeling, viz. scale space on the unit sphere, used among others for codomain regularization in the context of high angular resolution diffusion imaging (HARDI), and retino-cortical scale space, proposed as a biologically plausible model of the human visual pathway from retina to striate cortex.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The operator exp( g) is bounded and defines a strongly continuous semigroup for t∈ℝ+∪{0}.

  2. 2.

    Additional Γ-corrections will be needed for non-scalar signals, recall Sect. 9.2.1, e.g. \(D_{\mu}^{A,\varGamma}v^{\nu}(x) = (\delta^{\nu}_{\rho }(\partial_{\mu}+A_{\mu}(x)) + \varGamma_{\rho\mu}^{\nu}(x))v^{\rho}(x)\).

  3. 3.

    In physics, however, one typically considers Hermitean operators i∂ μ, respectively i∂ μ+A μ.

  4. 4.

    This definition differs from the one proposed by Georgiev, which fails to be self-dual [184].

  5. 5.

    At this level of rigor we ignore the singularity at the origin, but cf. [153].

  6. 6.

    Homegeneity in fact holds almost everywhere in the sense that space remains flat except at the foveal centre, at which the Ricci curvature tensor degenerates. This singularity can be removed at the expense of introducing global curvature with appreciable magnitude in the fovea centralis [153].

  7. 7.

    Cf. functions.wolfram.com for further properties of \(Y^{m}_{\ell}\) and \(P^{m}_{\ell}\).

References

  1. Basser, P.J., Mattiello, J., Le Bihan, D.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66(1), 259–267 (1994)

    Google Scholar 

  2. Basser, P.J., Mattiello, J., Le Bihan, D.: Estimation of the effective self-diffusion tensor from the NMR spin echo. J. Magn. Reson. 103, 247–254 (1994)

    Google Scholar 

  3. Bijl, P.: Aspects of visual contrast detection. PhD thesis, Utrecht University, Department of Physics, Utrecht, The Netherlands (May 8, 1991)

    Google Scholar 

  4. Burgeth, B., Didas, S., Weickert, J.: Relativistic scale-spaces. In: Kimmel, R., Sochen, N., Weickert, J. (eds.) Scale Space and PDE Methods in Computer Vision: Proceedings of the 5th International Conference, Scale-Space 2005, Hofgeismar, Germany, April 2005. Lecture Notes in Computer Science, vol. 3459, pp. 1–12. Springer, Berlin (2005)

    Chapter  Google Scholar 

  5. Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Apparent diffusion coefficients from high angular resolution diffusion imaging: estimation and applications. Magn. Reson. Med. 56(2), 395–410 (2006)

    Article  Google Scholar 

  6. Descoteaux, M., Angelino, E., Fitzgibbons, S., Deriche, R.: Regularized, fast, and robust analytical Q-ball imaging. Magn. Reson. Med. 58(3), 497–510 (2007)

    Google Scholar 

  7. Duits, R., Florack, L., de Graaf, J., ter Haar Romeny, B.: On the axioms of scale space theory. J. Math. Imaging Vis. 20(3), 267–298 (2004)

    MathSciNet  MATH  Google Scholar 

  8. Florack, L.M.J.: Image Structure. Computational Imaging and Vision Series, vol. 10. Kluwer Academic, Dordrecht (1997)

    Book  Google Scholar 

  9. Florack, L.M.J.: A geometric model for cortical magnification. In: Lee, S.-W., Bülthoff, H.H., Poggio, T. (eds.) Biologically Motivated Computer Vision: Proceedings of the 1st IEEE International Workshop, BMCV 2000, Seoul, Korea, May 2000. Lecture Notes in Computer Science, vol. 1811, pp. 574–583. Springer, Berlin (2000)

    Chapter  Google Scholar 

  10. Florack, L.M.J.: Modeling foveal vision. In: Sgallari, F., Murli, A., Paragios, N. (eds.) Scale Space and Variational Methods in Computer Vision: Proceedings of the 1st International Conference, SSVM 2007, Ischia, Italy, May–June 2007. Lecture Notes in Computer Science, vol. 4485, pp. 919–928. Springer, Berlin (2007)

    Chapter  Google Scholar 

  11. Florack, L.M.J., Salden, A.H., ter Haar Romeny, B.M., Koenderink, J.J., Viergever, M.A.: Nonlinear scale-space. In: ter Haar Romeny, B.M. (ed.) Geometry-Driven Diffusion in Computer Vision. Computational Imaging and Vision Series, vol. 1, pp. 339–370. Kluwer Academic, Dordrecht (1994)

    Chapter  Google Scholar 

  12. Georgiev, T.: Covariant derivatives and vision. In: Leonardis, A., Bischof, H., Prinz, A. (eds.) Proceedings of the 9th European Conference on Computer Vision, Graz, Austria, May 2006. Lecture Notes in Computer Science, vol. 3951–3954, pp. 56–69. Springer, Berlin (2006)

    Google Scholar 

  13. Hess, C.P., Mukherjee, P., Tan, E.T., Xu, D., Vigneron, D.B.: Q-ball reconstruction of multimodal fiber orientations using the spherical harmonic basis. Magn. Reson. Med. 56, 104–117 (2006)

    Article  Google Scholar 

  14. Jian, B., Vemuri, B.C., Özarslan, E., Carney, P.R., Mareci, T.H.: A novel tensor distribution model for the diffusion-weighted MR signal. NeuroImage 37, 164–176 (2007)

    Google Scholar 

  15. Koenderink, J.J.: The structure of images. Biol. Cybern. 50, 363–370 (1984)

    MathSciNet  MATH  Google Scholar 

  16. Koenderink, J.J.: The brain a geometry engine. Psychol. Res. 52, 122–127 (1990)

    Article  Google Scholar 

  17. Koenderink, J.J.: Image space. In: Ablamwicz, R. (ed.) Clifford Algebras; Applications to Mathematics, Physics, and Engineering, pp. 577–596. Birkhaüser, Boston (2004)

    Chapter  Google Scholar 

  18. Koenderink, J.J., van Doorn, A.D.: Image processing done right. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) Proceedings of the 7th European Conference on Computer Vision, Copenhagen, Denmark, May–June 2002. Lecture Notes in Computer Science, vols. 2350–2353, pp. 158–172. Springer, Berlin (2002)

    Google Scholar 

  19. Le Bihan, D., Mangin, J.-F., Poupon, C., Clark, C.A., Pappata, S., Molko, N., Chabriat, H.: Diffusion tensor imaging: concepts and applications. J. Magn. Reson. Imaging 13, 534–546 (2001)

    Article  Google Scholar 

  20. Lindeberg, T.: Scale-Space Theory in Computer Vision. The Kluwer International Series in Engineering and Computer Science. Kluwer Academic, Dordrecht (1994)

    MATH  Google Scholar 

  21. Özarslan, E., Mareci, T.H.: Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution imaging. Magn. Reson. Med. 50(5), 955–965 (2003)

    Google Scholar 

  22. Özarslan, E., Shepherd, T.M., Vemuri, B.C., Blackband, S.J., Mareci, T.H.: Resolution of complex tissue microarchitecture using the diffusion orientation transform (DOT). NeuroImage 31, 1086–1103 (2006)

    Article  Google Scholar 

  23. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Google Scholar 

  24. Rodieck, R.W.: The First Steps in Seeing. Sinauer Associates, Sunderland (1998)

    Google Scholar 

  25. Spivak, M.: Differential Geometry, vols. 1–5. Perish, Berkeley (1975)

    MATH  Google Scholar 

  26. Sporring, J., Nielsen, M., Florack, L.M.J., Johansen, P. (eds.): Gaussian Scale-Space Theory. Computational Imaging and Vision Series, vol. 8. Kluwer Academic, Dordrecht (1997)

    MATH  Google Scholar 

  27. Stejskal, E.O., Tanner, J.E.: Spin diffusion measurements: Spin echoes in the presence of a time-dependent field gradient. J. Comput. Phys. 42, 288–292 (1965)

    Google Scholar 

  28. ter Haar Romeny, B.M. (ed.): Geometry-Driven Diffusion in Computer Vision. Computational Imaging and Vision Series, vol. 1. Kluwer Academic, Dordrecht (1994)

    MATH  Google Scholar 

  29. ter Haar Romeny, B.M.: Front-End Vision and Multi-Scale Image Analysis: Multi-Scale Computer Vision Theory and Applications, Written in Mathematica. Computational Imaging and Vision Series, vol. 27. Kluwer Academic, Dordrecht (2003)

    Book  Google Scholar 

  30. Tuch, D.S.: Q-ball imaging. Magn. Reson. Med. 52, 1358–1372 (2004)

    Google Scholar 

  31. Weickert, J.A.: Anisotropic Diffusion in Image Processing. ECMI Series. Teubner, Stuttgart (1998)

    MATH  Google Scholar 

Download references

Acknowledgements

The Netherlands Organisation for Scientific Research (NWO) is gratefully acknowledged for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Florack .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Florack, L. (2012). Scale Space Representations Locally Adapted to the Geometry of Base and Target Manifold. In: Florack, L., Duits, R., Jongbloed, G., van Lieshout, MC., Davies, L. (eds) Mathematical Methods for Signal and Image Analysis and Representation. Computational Imaging and Vision, vol 41. Springer, London. https://doi.org/10.1007/978-1-4471-2353-8_9

Download citation

Publish with us

Policies and ethics