Skip to main content

Coda: A Dual Form of Ramsey’s Theorem

  • Chapter
Combinatorial Set Theory

Part of the book series: Springer Monographs in Mathematics ((SMM))

  • 2650 Accesses

Abstract

In this chapter we shall present some results in dual Ramsey Theory, i.e., Ramsey type results dealing with partitions of ω. The word “dual” is motivated by the following fact: Each infinite subset of ω corresponds to the image of an injective function from ω into ω, whereas each infinite partition of ω corresponds to the set of pre-images of elements of ω of a surjective function from ω onto ω. Similarly, n-element subsets of ω correspond to images of injective functions from n into ω, whereas n-block partitions of ω correspond to pre-images of surjective functions from ω onto n. Thus, to some extent, subsets of ω and partitions of ω are dual to each other.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spiros A. Argyros, Vaggelis Felouzis, Vassilis Kanellopoulos: A proof of Halpern–Läuchli partition theorem. Eur. J. Comb. 23, 1–10 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andreas Blass: A partition theorem for perfect sets. Proc. Am. Math. Soc. 82, 271–277 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  3. Tom Brown, Bruce M. Landman, Aaron Robertson: Bounds on some van der Waerden numbers. J. Comb. Theory, Ser. A 115, 1304–1309 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Timothy J. Carlson, Steve G. Simpson: A dual form of Ramsey’s Theorem. Adv. Math. 53, 265–290 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  5. Mirna Džamonja, Jean A. Larson, William J. Mitchell: A partition theorem for a large dense linear order. Isr. J. Math. 171, 237–284 (2009)

    Article  MATH  Google Scholar 

  6. Paul Erdős: Some unsolved problems. Magy. Tud. Akad. Mat. Kut. Intéz. Közl. 6, 221–254 (1961)

    Google Scholar 

  7. Ronald L. Graham, Bruce L. Rothschild: Ramsey’s Theorem for n-parameter sets. Trans. Am. Math. Soc. 159, 257–292 (1971)

    MathSciNet  MATH  Google Scholar 

  8. Ronald L. Graham, Bruce L. Rothschild: A short proof of van der Waerden’s Theorem on arithmetic progressions. Proc. Am. Math. Soc. 42, 385–386 (1974)

    MathSciNet  MATH  Google Scholar 

  9. Ronald L. Graham, Bruce L. Rothschild, Joel H. Spencer: Ramsey Theory, 2nd edn. Wiley, New York (1980)

    MATH  Google Scholar 

  10. Lorenz Halbeisen: Combinatorial Properties of Sets of Partitions. Habilitationsschrift, University of Bern/Zürich (Switzerland) (2003/2009)

    Google Scholar 

  11. Lorenz Halbeisen, Norbert Hungerbühler: An application of van der Waerden’s theorem in additive number theory. Integers. Electron. J. Combin. Number Theory 0, A07 (2000), 5 pp. (electronic)

    Google Scholar 

  12. Lorenz Halbeisen, Pierre Matet: A result in dual Ramsey theory. J. Comb. Theory, Ser. A 100, 394–398 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Alfred W. Hales, Robert I. Jewett: Regularity and positional games. Trans. Am. Math. Soc. 106, 222–229 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  14. James D. Halpern: Nonstandard combinatorics. Proc. London Math. Soc. (3) 30, 40–54 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  15. James D. Halpern, Hans Läuchli: A partition theorem. Trans. Am. Math. Soc. 124, 360–367 (1966)

    Article  MATH  Google Scholar 

  16. James D. Halpern, Azriel Lévy: The Boolean prime ideal theorem does not imply the axiom of choice. In: Axiomatic Set Theory, Dana S. Scott (ed.). Proceedings of Symposia in Pure Mathematics, vol. XIII, Part I, pp. 83–134. Am. Math. Soc., Providence (1971)

    Chapter  Google Scholar 

  17. Neil Hindman: Partition regularity of matrices. In: Combinatorial Number Theory, Bruce Landman, Melvyn B. Nathanson, Jaroslav Nešetřil, Richard J. Nowakowski, Carl Pomerance (eds.). Proceedings of the ‘Integers Conference 2005’ in Celebration of the 70th Birthday of Ronald Graham, Carrollton, Georgia, USA, October 27–30, 2005, pp. 265–298. De Gruyter, Berlin (2007)

    Google Scholar 

  18. Neil Hindman, Imre Leader, Dona Strauss: Open problems in partition regularity. Comb. Probab. Comput. 12, 571–583 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Stasys Jukna: Extremal Combinatorics. With Applications in Computer Science. Texts in Theoretical Computer Science. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  20. Veikko Keränen: Abelian squares are avoidable on 4 letters. In: Automata, Languages and Programming, Vienna, 1992, A.R.D. Mathias (ed.). Lecture Notes in Computer Science, vol. 623, pp. 41–52. Springer, Berlin (1992)

    Chapter  Google Scholar 

  21. Richard Laver: Products of infinitely many perfect trees. J. London Math. Soc. (2) 29, 385–396 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Lothaire: Combinatorics on Words. Cambridge Mathematical Library. Cambridge University Press, Cambridge (1997). With a foreword by Roger Lyndon and a preface by Dominique Perrin, corrected reprint of the 1983 original, with a new preface by Perrin

    Book  MATH  Google Scholar 

  23. Pierre Matet: Shelah’s proof of the Hales–Jewett theorem revisited. Eur. J. Comb. 28, 1742–1745 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Keith R. Milliken: A Ramsey theorem for trees. J. Comb. Theory, Ser. A 26, 215–237 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  25. Alon Nilli: Shelah’s proof of the Hales–Jewett theorem. In: Mathematics of Ramsey Theory, J. Nešetřil, V. Rödl (eds.). Algorithms and Combinatorics, vol. 5, pp. 150–151. Springer, Berlin (1990)

    Chapter  Google Scholar 

  26. David Pincus, James D. Halpern: Partitions of products. Trans. Am. Math. Soc. 267, 549–568 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  27. Peter A. B. Pleasants: Non-repetitive sequences. Proc. Camb. Philos. Soc. 68, 267–274 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hans J. Prömel, Bernd Voigt: Graham–Rothschild parameter sets. In: Mathematics of Ramsey Theory, J. Nešetřil, V. Rödl (eds.), pp. 113–149. Springer, Berlin (1990)

    Chapter  Google Scholar 

  29. Goran Ramović: Halpern–Läuchli theorem on the product of infinitely many trees in the version of strongly embedded trees. Univerzitet u Beogradu. Publikacije Elektrotehničkog Fakulteta. Serija Matematika 7, 18–24 (1996)

    MATH  Google Scholar 

  30. Saharon Shelah: Primitive recursive bounds for the van der Waerden numbers. J. Am. Math. Soc. 1, 683–697 (1988)

    Article  MATH  Google Scholar 

  31. Saharon Shelah: Strong partition relations below the power set: consistency; was Sierpiński right? II. In: Sets, Graphs and Numbers, Budapest, 1991, G. Halasz, Laszlo Lovasz, D. Miklos, T. Szonyi (eds.). Colloquia Mathematica Societatis János Bolyai, vol. 60, pp. 637–668. North-Holland, Amsterdam (1992)

    Google Scholar 

  32. Stevo Todorčević: Introduction to Ramsey Spaces. Annals of Mathematics Studies, vol. 174. Princeton University Press, Princeton (2010)

    Google Scholar 

  33. Stevo Todorčević, Ilijas Farah: Some Applications of the Method of Forcing. Yenisei Series in Pure and Applied Mathematics. Yenisei, Moscow (1995)

    MATH  Google Scholar 

  34. Bartel L. van der Waerden: Beweis einer Baudetschen Vermutung. Nieuw Arch. Wiskd. 15, 212–216 (1927)

    Google Scholar 

  35. Bartel L. van der Waerden: Wie der Beweis der Vermutung von Baudet gefunden wurde. Elem. Math. 53, 139–148 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenz J. Halbeisen .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag London Limited

About this chapter

Cite this chapter

Halbeisen, L.J. (2012). Coda: A Dual Form of Ramsey’s Theorem. In: Combinatorial Set Theory. Springer Monographs in Mathematics. Springer, London. https://doi.org/10.1007/978-1-4471-2173-2_11

Download citation

Publish with us

Policies and ethics