Skip to main content

Dynamic Coupling in Cortical Neural Networks

  • Conference paper
  • First Online:
ICANN ’93 (ICANN 1993)

Included in the following conference series:

  • 43 Accesses

Abstract

Electrophysiological studies of cortical function on the basis of simultaneous, separable multiple-neuron recordings show that interactions between cortical neurons may strongly depend on stimulus- and behavioral context. Moreover, the interactions may show dynamics on several different time scales, with time constants of modulation as low as tens of milliseconds. These findings point at the need to distinguish between anatomical connectivity and functional coupling in cortical networks. Underlying mechanisms and functional implications of such dynamic coupling are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sherrington, C: Man on his nature. The Gifford Lectures, Edinburgh 1937–38. Cambridge: University Press, 1941

    Google Scholar 

  2. Hebb D (1949) The organization of behavior. A neuropsychological theory. Wiley, New York

    Google Scholar 

  3. James W (1890) Psychology (Briefer Course). In: Andersen JA, Rosenfeld E (eds)(1989) Neurocomputing. MIT Press, Cambridge, MA

    Google Scholar 

  4. Gerstein GL, Bedenbaugh P, Aertsen AMHJ (1989) Neuronal Assemblies. IEEE Trans Biomed Engineering 36: 4–14

    Article  Google Scholar 

  5. Abeles M (1982) Local cortical circuits. An electrophysiological study. Springer, Berlin

    Book  Google Scholar 

  6. Abeles M (1991) Corticonics. Neural circuits in the cerebral cortex. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  7. Braitenberg V, Schüz A (1991) Anatomy of the cortex. Statistics and geometry. Springer, Berlin

    Book  Google Scholar 

  8. Eggermont JJ (1990) The correlative brain. Theory and experiment in neural interaction. Springer, Berlin

    Book  Google Scholar 

  9. Gerstein GL, Bloom MJ, Espinosa IE, Evanczuk S, Turner MR (1983) Design of a laboratory for multineuron studies. IEEE Trans Systems, Man and Cybernetics SMC-13: 668–676

    Article  Google Scholar 

  10. Krüger J (1983) Simultaneous individual recordings from many cerebral neurons: techniques and results. Rev Physiol Biochem Pharmacol 98: 177–233

    Article  Google Scholar 

  11. Perkel DH, Gerstein GL, Moore GP (1967) Neuronal spike trains and stochastic point processes. II. Simultaneous spike trains. Biophys J 7: 419–440

    Article  Google Scholar 

  12. Aertsen AMHJ, Gerstein GL (1985) Evaluation of neuronal connectivity: sensitivity of cross correlation. Brain Res 340: 341–354

    Article  Google Scholar 

  13. Gerstein G, Perkel D, Dayhoff J (1985) Cooperative firing activity in simultaneously recorded populations of neurons: detection and measurement. J Neurosci 5, 881–889

    Article  Google Scholar 

  14. Gerstein G, Aertsen A (1985) Representation of cooperative firing activity among simultaneously recorded neurons. J Neurophysiol 54, 1513–1527

    Article  Google Scholar 

  15. Aertsen A, Bonhoeffer T, Krüger J (1987) Coherent activity in neuronal populations: analysis and interpretation. In: Physics of Cognitive Processes, pp 1–34. Caianiello ER (ed). World Scientific Publishing, Singapore

    Google Scholar 

  16. Palm, G, Aertsen AMHJ, Gerstein GL (1988) On the significance of correlations among neuronal spike trains. Biol Cybern 59: 1–11

    Article  MathSciNet  Google Scholar 

  17. Aertsen AMHJ, Gerstein GL, Habib MK, Palm G (1989) Dynamics of neuronal firing correlation: modulation of “effective connectivity”. J Neurophysiol 61: 900–917

    Article  Google Scholar 

  18. Dayhoff JE, Gerstein GL (1983) Favored patterns in spike trains. I. Detection, II. Application. J Neurophysiol 49: 1334–1348, 1349–1363

    Article  Google Scholar 

  19. Abeles M, Gerstein GL (1988) Detecting spatiotemporal firing patterns among simultaneously recorded single neurons. J Neurophysiol 60: 909–924

    Article  Google Scholar 

  20. Aertsen AMHJ, Gerstein GL (1991) Dynamic aspects of neuronal cooperativity: fast stimulus-locked modulations of ‘effective connectivity’. In: Neuronal Cooperativity, pp 52–67. Krüger J (ed). Springer, Berlin

    Chapter  Google Scholar 

  21. Aertsen A, Vaadia E, Abeles M, Ahissar E, Bergman H, Karmon B, Lavner Y, Margalit E, Nelken I, Rotter S (1991) Neural interactions in the frontal cortex of a behaving monkey: Signs of dependence on stimulus context and behavioral state. J f Hirnforschung 32: 735–743

    Google Scholar 

  22. Vaadia E, Ahissar E, Bergman H, Lavner Y (1991) Correlated activity of neurons: a neural code for higher brain functions? In: Neuronal Cooperativity, pp 249–279. Krüger J (ed). Springer, Berlin

    Chapter  Google Scholar 

  23. Vaadia E, Aertsen A (1992) Coding and computation in the cortex: single-neuron activity and cooperative phenomena. In: Information Processing in the Cortex: Experiments and Theory, pp 81–121. Aertsen A, Braitenberg V (eds). Berlin, Heidelberg, New York, Tokyo: Springer

    Chapter  Google Scholar 

  24. Krüger J (1982) A 12-fold microelectrode for recording from vertically aligned cortical neurones. J. Neurosc. Meth. 6: 347–350

    Article  Google Scholar 

  25. Neven H, Aertsen A (1992) Rate coherence and event coherence in the visual cortex: a neuronal model of object recognition. Biol Cybern 67: 309–322

    Article  Google Scholar 

  26. A review on experimental results, based on recordings from a variety of regions in the CNS of different animal species, made in several different laboratories, is currently in progress (Gerstein G, Aertsen A, et al., in prep.)

    Google Scholar 

  27. Aertsen A, Preissl H (1991) Dynamics of activity and connectivity in physiological neuronal networks. In: Nonlinear dynamics and neuronal networks, pp 281–301. Schuster H (ed). VCH Verlag, Weinheim

    Google Scholar 

  28. von der Malsburg, C. (1981) The correlation theory of brain function. Internal report 81–2. Max-Planck-Institute for Biophysical Chemistry, Göttingen (FRG)

    Google Scholar 

  29. von der Malsburg, C. (1986) Am I thinking assemblies? In: Palm, G., Aertsen, A. (eds.): Brain Theory, pp. 161–176. Berlin, Heidelberg, New York: Springer

    Chapter  Google Scholar 

  30. Sejnowski, T.J. (1981) Skeleton filters in the brain. In: Hinton, G.E., Anderson, J.A. (eds.): Parallel Models of Associative Memory, pp. 189–212. Hillsdale: Lawrence Erlbaum Assoc. Publishers

    Google Scholar 

  31. Erb M, Palm G, Aertsen A, Bonhoeffer T (1986) Functional versus structural connectivity in neuronal nets. In: Strukturbildung und Musteranalyse, p 23. Proc 9th Cybernetics Congress (DGK). Göttingen (FRG)

    Google Scholar 

  32. Erb M, Aertsen A, Palm G (1989) Functional connectivity in neuronal systems: context-dependence of effective network organization does not require synaptic plasticity. In: Dynamics and plasticity in neuronal systems, p 445. Eisner N, Singer W (eds). Thieme, Stuttgart, New York

    Google Scholar 

  33. Erb M, Aertsen A (1992) Dynamics of activity in biology-oriented neural network models: stability at low firing rates. In: Information Processing in the Cortex: Experiments and Theory, pp 201–223. Aertsen A, Braitenberg V (eds). Berlin, Heidelberg, New York, Tokyo: Springer

    Chapter  Google Scholar 

  34. Boven K-H, Aertsen A (1989) Dynamics of activity in neuronal networks give rise to fast modulations of functional connectivity. In: Parallel processing in neural systems and computers, pp 53–56. Eckmiller R et al (eds). Elsevier Science Publishers

    Google Scholar 

  35. Bedenbaugh PH, Gerstein GL, Boven K-H, Aertsen AMHJ (1988) The meaning of stimulus dependent changes in cross correlation between neuronal spike trains. Soc Neurosci Abstr 14: 651

    Google Scholar 

  36. Bedenbaugh PH, Gerstein GL, Aertsen AMHJ (1990) Dynamic convergence in neural assemblies. Soc Neurosci Abstr 16: 1224

    Google Scholar 

  37. Bernander O, Douglas RJ, Martin KAC, Koch C (1992) Synaptic background activity determines spatiotemporal integration in single pyramidal cells. Proc Nat Acad Sci 88: 11569–11573

    Article  Google Scholar 

  38. Rapp M, Yarom Y, Segev I (1992) The impact of parallel fiber background activity on the cable properties of cerebellar purkinje cells (preprint)

    Article  Google Scholar 

  39. Aertsen, A.M.H.J., Johannesma, P.I.M. (1981) The spectro-temporal receptive field. A functional characteristic of auditory neurons. Biol. Cybern. 43: 133–143

    Article  Google Scholar 

  40. Eggermont, J.J., Aertsen, A.M.H.J., Hermes, D.J., Johannesma, P.I.M. (1981) Spectro-temporal characterization of auditory neurons: redundant or necessary? Hearing Res. 5: 109–121

    Article  Google Scholar 

  41. Aertsen in brain theory

    Google Scholar 

  42. Dinse, H.R., Krüger, K., Best, J. (1990) A temporal structure of cortical information processing. Concepts in Neuroscience 1: 199–238

    Google Scholar 

  43. Eckhorn, R., Bauer, R., Jordan, W., Brosch, M., Kruse, W., Munk, M., Reitboeck, H.J. (1988) Coherent oscillations: a mechanism of feature linking in the visual cortex? Multiple electrode and correlation analysis in the cat. Biol. Cybern. 60: 121–130

    Article  Google Scholar 

  44. Gray, C.M., Singer, W. (1989) Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc. Natl. Acad. Sci. USA 86: 1698–1702

    Article  Google Scholar 

  45. Gray, C.M., König, P., Engel, A.K., Singer, W. (1989) Oscillatory responses in cat visual cortex exhibit intercolumnar synchronization which reflects global stimulus properties. Nature 338: 334–337

    Article  Google Scholar 

  46. Abeles M, Berman H, Margalit E, Vaadia E (1993) Spatio-temporal firing patterns in the frontal cortex of behaving monkeys (submitted)

    Article  Google Scholar 

  47. Abeles M, Prut Y, Bergman H, Vaadia E, Aertsen A (1993) Integration, synchronicity and periodicity. In: Brain Theory: Spatio-Temporal Aspects of Brain Function. Aertsen A (ed) Amsterdam, New York: Elsevier Science Publ. (in press)

    Google Scholar 

  48. Sompolinsky H, Golomb D, Kleinfeld D (1990) Global processing of visual stimuli in a network of coupled oscillators. Proc Natl. Acad. Sci. USA 87: 7200–7204

    Article  Google Scholar 

  49. Sompolinsky H, Golomb D, Kleinfeld D (1991) Cooperative dynamics in visual processing. Physical Rev A 43: 6990–7011

    Article  Google Scholar 

  50. Sporns O, Gaily JA, Reeke GN Jr, Edelman GM, (1989) Reentrant signaling among simulated neuronal groups leads to coherency in their oscillatory avtivity. Proc Natl Acad Sci USA 86: 7265–7269

    Article  Google Scholar 

  51. Schulen TB, König P (1991) Stimulus-dependent assembly formation of oscillatory responses. 2: Desynchronisation. Neural Comp 3: 167–178

    Article  Google Scholar 

  52. König P, Schulen TB (1991) Stimulus-dependent assembly formation of oscillatory responses. 1: Synchronisation. Neural Comp 3: 155–167

    Article  Google Scholar 

  53. Eckhorn R, Reitboeck HJ, Arndt M, Dicke P (1990) Feature linking via a synchronization among distributed assemblies: simulations of results from cat visual cortex. Neural Comp 2, 293–307

    Article  Google Scholar 

  54. Johannesma P, Aertsen A, van den Boogaard H, Eggermont J, Epping W (1986) From synchrony to harmony: Ideas on the function of neural assemblies and on the interpretation of neural synchrony. In: Palm G, Aertsen A (eds) Brain Theory, pp 25–47. Springer, Berlin Heidelberg New York

    Chapter  Google Scholar 

  55. Braitenberg, V. (1978) Cell assemblies in the cerebral cortex. In: Heim, R., Palm, G. (eds.): Theoretical Approaches to Complex Systems. Lecture Notes in Biomathematics, Vol. 21, pp. 171–188. Berlin, Heidelberg, New York: Springer

    Chapter  Google Scholar 

  56. Palm, G. (1982) Neural assemblies. An alternative approach to artificial intelligence. Studies in Brain Function, Vol. 7. Berlin, Heidelberg, New York: Springer

    MATH  Google Scholar 

  57. Miller R (1988) Cortico-striatal and cortico-limbic circuits: a two-tiered model of learning and memory function. In: Information Processing by the Brain: Views and hypotheses from a cognitive-physiological perspective, pp 179–198. Markowitsch H (ed). Bern: Hans Huber Press

    Google Scholar 

  58. Wickens J (1992) The contribution of the striatum to cortical function. In: Information Processing in the Cortex: Experiments and Theory, pp 271–284. Aertsen A, Braitenberg V (eds). Berlin, Heidelberg, New York, Tokyo: Springer

    Chapter  Google Scholar 

  59. Plenz D, Aertsen A (1993) The basal ganglia: minimal coherence detection on cortical activity distributions, In: The Basal Ganglia IV. New Ideas and Data on Structure and Function. Percheron G, McKenzie JS, Féger J (eds), New York: Plenum Press (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag London Limited

About this paper

Cite this paper

Aertsen, A. (1993). Dynamic Coupling in Cortical Neural Networks. In: Gielen, S., Kappen, B. (eds) ICANN ’93. ICANN 1993. Springer, London. https://doi.org/10.1007/978-1-4471-2063-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-2063-6_1

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-3-540-19839-0

  • Online ISBN: 978-1-4471-2063-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics