Skip to main content

Microenvironmental control of glucocorticoid functions in immune regulation

  • Chapter
Steroid Hormones and the T-Cell Cytokine Profile

Abstract

Lipophilic hormones, including the steroids, thyroid hormones, retinoids, 1,25 dihydroxyvitamin D3, members of the prostaglandin J2 series, and leukotriene B4 represent a diverse group of molecules that can regulate gene expression through a common molecular mechanism. This diverse set of ligands traverse the plasma membrane and bind to ligand-specific intracellular receptors present within the cytosol, perinuclear space, or the nucleus of responsive cell types. Once activated by ligand binding, these intracellular receptors, which are all members of the steroid/nuclear receptor superfamily bind to specific sites on DNA and function as enhancers or repressors of gene transcription [1,2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chin WW (1989) Hormonal regulation of gene expression. In: DeGroot LJ (ed) Endocrinology. Saunders, Philadelphia, p 6

    Google Scholar 

  2. Manglesdorf DJ, Thummel C, Beato M, Herrlich P, Schütz G, Umesono K, Blumberg B, Kastner P, Mark M, Chambon P, Evans, RM (1995) The nuclear receptor super-family: the second decade. Cell 83: 835

    Google Scholar 

  3. Garbe A, Buck J, Hämmerling U (1992) Retinoids are important cofactors in T cell activation. J Exp Med 176: 109

    PubMed  CAS  Google Scholar 

  4. Rigby WFC, Noelle RJ, Krause K, Fanger MW (1985) The effects of 1,25-dihydroxyvitamin D3 on human T lymphocyte activation and proliferation: a cell cycle analysis. J Immunol 135: 2279

    PubMed  CAS  Google Scholar 

  5. Rigby WFC, Denome S, Fanger MW (1987) Regulation of lymphokine production and human T lymphocyte activation by 1,25-dihydroxyvitamin D3. Specific inhibition at the level of messanger RNA. J Clin Invest 79:1659

    PubMed  CAS  Google Scholar 

  6. Smithson G, Medina K, Ponting I, Kincade PW (1995) Estrogen suppresses stromal cell-dependent lymphopoiesis in culture. J Immunol 155: 3409

    PubMed  CAS  Google Scholar 

  7. Axelrod J, Reisine TD (1984) Stress hormones: their interaction and regulation. Science 244: 452

    Google Scholar 

  8. Fraser R (1992) Biosynthesis of adrenocortical steroids. In: James VHT (ed) The adrenal gland. Raven Press, New York, p 117

    Google Scholar 

  9. Reichlin S (1993) Nueroendocrine-immune interactions. New Engl J Med 329: 1246

    PubMed  CAS  Google Scholar 

  10. Schleimer RP (1993) An overview of glucocorticoid anti-inflammatory actions. Eur J Clin Pharmacol 45: S3

    PubMed  CAS  Google Scholar 

  11. Hench PS (1952) The reversibility of certain rheumatic and nonrheumatic conditions by the use of cortisone or of the pituitary adrenocorticotropic hormone. Ann Intern Med 36: 1

    PubMed  CAS  Google Scholar 

  12. Kass EH, Finland M (1953) Adrenocortical hormones in infection and immunity. Ann Rev Microbiol 7: 361

    CAS  Google Scholar 

  13. Sheagren IN (1989) Glucocorticoid action: infectious diseases. In: Schleimer RP, Clamen HN, Oronsky A (eds) Anti-inflammatory steroid action. Academic Press, San Diego, p525

    Google Scholar 

  14. Axelrod L (1989) Side effects of glucocorticoid therapy. In: Schleimer RP, Clamen HN, Oronsky A eds) Anti-inflammatory steroid action. Academic Press, San Diego, p 377

    Google Scholar 

  15. Cupps TR, Fauci AS (1982) Corticosteroid-mediated immunoregulation in man. Immunol Rev 65: 133

    PubMed  CAS  Google Scholar 

  16. Munck A, Guyre PM, Holbrook NJ (1984) Physiological functions of glucocorticoids in stress and their relation to pharmacological actions. Endocr Rev 5: 25

    PubMed  CAS  Google Scholar 

  17. Cupps TR (1989) Effects of glucocorticoids on lymphocyte function. In: Schleimer RP, Clamen, HN, Oronsky A, (eds) Anti-inflammatory steroid action. Academic Press, San Diego, p132

    Google Scholar 

  18. Lurie MB, Zappadosi P, Dannenberg AMI, Swartz IB (1951) Constitutional factors in resistance to infection: the effect of cortisone on the pathogenesis of tuberculosis. Science 113: 234

    PubMed  CAS  Google Scholar 

  19. Vernon-Roberts B (1969) The effects of steroid hormones on macrophage activity. In: Boume GH, Danielli JF (eds) International Review of Cytology Academic Press, New York, p131

    Google Scholar 

  20. Snyder DS, Unanue ER (1982) Corticosteroids inhibit murine macrophage la expression and interleukin 1 production. J Immunol 129:1803

    PubMed  CAS  Google Scholar 

  21. Rosa MD, Radomski M, Carnuccio R, Moncada S (1990) Glucocorticoids inhibit the induction of nitric oxide synthase in macrophages. Biochem Biophys Res Comm 172: 1246

    PubMed  Google Scholar 

  22. Smith RJ, Iden SS (1980) Pharmacological modulation of chemotactic factor-elicited release of granule-associated enzymes from human neutrophils. Effects of prostaglandine, non-steroid anti-inflammatory agents and corticosteroids. Biochem Pharmacol 29:2389

    PubMed  CAS  Google Scholar 

  23. Nelson DH, Wennhold AR, Murray DK (1981) Corticosteroid-induced simultaneous changes in leukocyte phospholipids and superoxide anion production. J Steroid Biochem 14: 321

    PubMed  CAS  Google Scholar 

  24. Kurihara A, Ojima F, Tsurufuji S (1984) Chemotactic factor production by rat polymorphonuclear leukocytes: stimulation with opsonized zymosan particles and inhibition by dexamethasone. Biochem Biophys Res Comm 119: 720

    PubMed  CAS  Google Scholar 

  25. Watanabe M, Yagi M, Omata M, Hirasawa N, Mue S, Tsurufuji S, Ohuchi K (1991) Stimulation of neutrophil adherence to vascular endothelial cells by histamine and thrombin and its inhibition by PAF antagonists and dexamethasone. Br J Pharmacol 102: 239

    PubMed  CAS  Google Scholar 

  26. Schleimer RP (1989) The effects of glucocorticoids on mast cells and basophils. In: Schleimer RP, Clamen HN, Oronsky A (eds) Anti-inflammatory steroid action. Academic Press, San Diego, p 226

    Google Scholar 

  27. Dougherty TF, Berliner DL, Berliner ML (1961) Corticosteroid-tissue interactions. Metab Clin Exp 10: 966

    Google Scholar 

  28. Wyllie AH (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284: 555

    PubMed  CAS  Google Scholar 

  29. Fernandez-Ruiz E, Rebollo A, Nieto MA, Sanz E, Somoza C, Ramirez F, Lopez-Rivas A, Silva A (1989) IL-2 protects T cell hybrids from the cytolytic effect of glucocorticoids. Synergistic effect of IL-2 and dexamethasone in the induction of high-affinity IL-2 receptors. J Immunol 143: 4146

    PubMed  CAS  Google Scholar 

  30. Cohen JJ (1992) Glucocorticoid-induced apoptosis in the thymus. Semin Immunol 4: 363

    PubMed  CAS  Google Scholar 

  31. Zacharchuk CM, Mercep M, Chakraborti P, Simons SSJ, Ashwell JD (1990) Programmed T lymphocyte death: cell activation-and steroid-induced pathways are mutually antagonistic. J Immunol 145: 4037

    PubMed  CAS  Google Scholar 

  32. King LB, Vacchio MS, Dixon K, Hunziker R, Marguiles DH, Ashwell JD (1995) A targeted glucocorticoid receptor antisense transgene increases thymocyte apoptosis and alters thymocyte development. Immunity 3: 647

    PubMed  CAS  Google Scholar 

  33. Garvy BA, King LE, Telford WG, Morford LA, Fraker PJ (1993) Chronic elevation of plasma corticosterone causes reductions in the number of cycling cells of the B lineage in murine bone marrow and induces apoptosis. Immunology 80: 587

    PubMed  CAS  Google Scholar 

  34. Paul WE, Seder RA (1994) Lymphocyte responses and cytokines. Cell 76: 241

    PubMed  CAS  Google Scholar 

  35. Beutler B, Krochin N, Milsark IW, Luedke C, Cerami A (1986) Control of cachectin (tumor necrosis factor) synthesis: mechanism of endotoxin resistance. Science 232: 977

    PubMed  CAS  Google Scholar 

  36. Ray A, Prefontaine KE (1994) Physical association and functional antagonism between the p65 subunit of transcription factor NF-kB and the glucocorticoid receptor. PNAS USA 91: 752

    PubMed  CAS  Google Scholar 

  37. Arya SK, Wong-Staal F, Gallo RC (1984) Dexamethasone-mediated inhibition of human T cell growth factor and gamma-interferon messenger RNA. J Immunol 133: 273

    PubMed  CAS  Google Scholar 

  38. Daynes RA, Araneo BA (1989) Contrasting effects of glucocorticoids on the capacity of T cells to produce the growth factors interleukine 2 and interleukin 4. Eur J Immunol 19: 2319

    PubMed  CAS  Google Scholar 

  39. Ramirez F, Fowell DJ, Puklavec M, Simmonds S, Mason D (1996) Glucocorticoids promote a Th2 cytokine response by CD4+ T cells in vitro. J Immunol 156: 2406

    PubMed  CAS  Google Scholar 

  40. de Waal Malefyt RJ, Abrams J, Bennet B, Figdor CG, de Vries JE (1991) Interleukin-10 (IL-10) inhibits cytokine synthesis by human monocytes: an autoregulatory role of IL-10 produced by monocytes. J Exp Med 174:1209

    Google Scholar 

  41. de waal Malefyt R, Figdor CG, Huijbens R, Mohan-Peterson S, Bennett B, Culpepper J, Dang W, Zurawski G, de Vries JE (1993) Effects of IL-13 on phenotype, cytokine production, and cytotoxic function of human monocytes: comparison with IL-4 and modulation by IFNy of IL-10. J Immunol 151: 6370

    Google Scholar 

  42. to Velde AA, Huijbens RJF, Heije K, de Vries JE, Figdor CG (1990) Interleukin-4 (IL-4) inhibits secretion of IL-1ß, tumor necrosis factor a, and IL-6 by human monocytes. Blood 76: 1392

    Google Scholar 

  43. Ayanlarbatuman O, Ferrero AP, Diaz A, Jimenez SA (1991) Regulation of transforming growth factor-b1 gene expression by glucocorticoids in normal human T lymphocytes. J Clin Invest 88: 1574

    PubMed  CAS  Google Scholar 

  44. Errasfa M, Russo-Marie F (1989) A purified lipocortin shares the anti-inflammatory effect of glucocorticosteroids in vivo in mice. Br J Pharmacol 97: 1051

    PubMed  CAS  Google Scholar 

  45. Oursler MJ, Riggs BL, Spelslaerg TC (1993) Glucocorticoid-induced activation of latent transforming growth factor-ß by normal human osteoblast-like cells. Endocrinology 133: 2187

    PubMed  CAS  Google Scholar 

  46. Wright APH, Zilliacus J, McEwan IJ, Dahlman-Wright K, Almof T, Carlstedt-Duke J, Gustafsson J-A (1993) Structure and function of the glucocorticoid receptor. J Steroid Biochem Mol Biol 47: 11

    PubMed  CAS  Google Scholar 

  47. Simons SSJ (1994) Function/activity of specific amino acids in glucocorticoid receptors. Vitam Horm 49: 49

    PubMed  CAS  Google Scholar 

  48. Arriza JL, Weinberger C, Cerelli G, Glaser TM, Handelin BL, Housman DE, Evans RM (1987) Cloning of human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor. Science 237: 268

    PubMed  CAS  Google Scholar 

  49. Miesfeld RL, Rusconi S, Godowski PJ, Maler BA, Okret S, Wikstrom A-C, Gustafsson A, Yamamoto KR (1986) Genetic complementation of a glucocorticoid receptor deficiency by expression of a cloned receptor cDNA. Cell 46: 389

    PubMed  CAS  Google Scholar 

  50. Pratt WB (1993) The role of heat shock proteins in regulating the function, folding, and trafficking of the glucocorticoid receptor. J Biol Chem 268: 21455

    PubMed  CAS  Google Scholar 

  51. Czar MJ, Lyons RH, Welsh MJ, Renoir JM, Pratt WB (1995) Evidence that the FK506binding immunophilin heat shock protein 56 is required for trafficking of the glucocorticoid receptor from the cytoplasm to the nucleus. Mol Endocrinol 9: 1549

    PubMed  CAS  Google Scholar 

  52. Luisi BF, Xu WX, Otwinowski Z, Freedman LP, Yamamoto KR, Sigler PB (1991) Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature 352: 497

    PubMed  CAS  Google Scholar 

  53. Yang-Yen H-S, Chambard J-C, Sun Y-L, Smeal T, Schmidt TJ, Drouin J, Karin M (1990) Transcriptional interference between c-Jun and the glucocorticoid receptor: mutual inhibition of DNA binding due to direct protein-protein interaction. Cell 62: 1205

    PubMed  CAS  Google Scholar 

  54. Jonat C, Rahmsdorf HJ, Park K-K, Cato ACB, Gebel S, Ponta H, Herrlich P (1990) Antitumor promotion and antiinflammation: down-modulation of AP-1 (Fos/Jun) activity by glucocorticoid hormone. Cell 62:1189

    PubMed  CAS  Google Scholar 

  55. Auphan N, DiDonato JA, Rosette C, Helmberg A, Karin M (1995) Immunosuppression by glucocorticoids: inhibition of NF-Kß activity through induction of IKß synthesis. Science 270: 286

    PubMed  CAS  Google Scholar 

  56. Scheinman RI, Cogswell PC, Lofquist AK, Baldwin ASJ (1995) Role of transcriptional activation of IKBa in mediation of Immunosuppression by glucocorticoids. Science 270: 283

    PubMed  CAS  Google Scholar 

  57. Calandra T, Bucala R (1996) Macrophage migration inhibitory factor: a counter-regulator of glucocorticoid action and critical mediator of septic shock. J Inflam 47: 39

    CAS  Google Scholar 

  58. Keller-Wood ME, Dallman MF (1984) Corticosteroid inhibition of ACTH secretion. Endocr Rev 5:1

    PubMed  CAS  Google Scholar 

  59. Mandrup-Poulsen T, Nerup J, Reimers JI, Pciot F, Andersen HU, Karlsen A, Bjerre U, Bergholdt R (1995) Cytokines and the endocrine system. I. The immunoendocrine network. Eur. J. Endocrinol 133:660

    PubMed  CAS  Google Scholar 

  60. Munck A, Leung K (1977) Glucocorticoid receptors and mechanism of action. In: Pasqualini JR (ed) Receptors and mechanism of action of steroid hormones. Marcel Dekker, New York, p 311

    Google Scholar 

  61. Ballard PL, Baxter JD, Higgins SJ, Rousseau GG, Tomkins G M (1974) General presence of glucocorticoid receptors in mammalian tissues. Endocrinology 94: 998

    PubMed  CAS  Google Scholar 

  62. Herman JP, Baxter JD, Higgins SJ, Rousseau, GG, Tomkins GM (1989) Localization and regulation of glucocorticoid and mineralocorticoid receptor messenger RNAs in the hippocampal formation of the rat. Mol. Endocrinol 3:1886

    CAS  Google Scholar 

  63. Cole TJ, Blendy JA, Schmid W, Strahle U, Schutz G (1993) Expression of the mouse glucocorticoid receptor and its role during development. J Steroid Biochem Mol Biol 47: 49

    PubMed  CAS  Google Scholar 

  64. Bodwell JE, Hu L-M, Hu J.-M, Orti E, Munck A (1993) Glucocorticoid receptors: ATP-dependent cycling and hormone-dependent hyperphosphorylation. J Steroid Biochem Mol Biol 47:31

    PubMed  CAS  Google Scholar 

  65. Hu J-M, Bodwell JE, Munck A (1994) Cell cycle-dependent glucocorticoid receptor phosphorylation and activity. Mol Endocrinol 8: 1709

    PubMed  CAS  Google Scholar 

  66. Hu L-M, Bodwell J, Hu J-M, Orti E, Munck A (1994) Glucocorticoid receptors in ATP-depleted cells. Dephosphorylation, loss of hormone binding, hsp90 dissociation, and ATP-dependent cycling. J Biol Chem 269: 6571

    PubMed  CAS  Google Scholar 

  67. Monder C (1991) Corticosteroids, receptors, and the organ-specific functions of 11β-hydroxysteroid dehydrogenase. FASEB J. 5: 3047

    PubMed  CAS  Google Scholar 

  68. Seckl JR (1993) 11β-hydroxysteroid dehydrogenase isoforms and their implications for blood pressure regulation. Eur J Clin Invest 23:589

    PubMed  CAS  Google Scholar 

  69. Amelung D, Huebner HJ, Roka L, Meyerheim G (1953) Conversion of cortisone to compound F. J Clin Endocrinol Metab 13: 1125

    PubMed  CAS  Google Scholar 

  70. Monder C, White PC (1993) l lβ-Hydroxysteroid dehydrogenase. Vitam Horm 47:187

    PubMed  CAS  Google Scholar 

  71. Whorwood CB, Ricketetts ML, Stewart PM (1994) Regulation of sodium-potassium adenosine triphosphate subunit gene expression by corticosteroids and 11β-hydroxysteroid dehydrogenase activity. Endocrinology 135: 901

    PubMed  CAS  Google Scholar 

  72. Katz AI (1982) Na-K-ATPase: its role in tubular sodium and potassium transport. Am J Physiol 242: F207

    PubMed  CAS  Google Scholar 

  73. Edwards CRW, Stewart PM (1991) The cortisol-cortisone shuttle and the apparent specificity of glucocorticoid and mineralocorticoid receptors. J Steroid Biochem Mol Biol 39: 859

    PubMed  CAS  Google Scholar 

  74. Sheppard K, Funder JW (1987) Mineralocorticoid specificity of renal Type I receptors: in vivo binding studies. Am J Physiol 252: E224

    PubMed  CAS  Google Scholar 

  75. Ulick S, Levine LS, Gunczler P, Zanconato G, Ramirez G, Rauh W, Rosier A, Bradlow HL, New MI (1979) A syndrome of apparent mineralocorticoid excess associated with defects in the peripheral metabolism of cortisol. J Clin Endocrinol Metab 49: 757

    PubMed  CAS  Google Scholar 

  76. Stewart PM, Corrie JET, Shackleton CHL, Edwards CRW (1988) Syndrome of apparent mineralocorticoid excess. A defect in the cortisol cortisone shuttle. J Clin Invest 82:340

    PubMed  CAS  Google Scholar 

  77. Funder JW, Pearce PT, Smith R, Smith AI (1988) Mineralocorticoid action: target-tissue specificity is enzyme, not receptor, mediated. Science 242: 583

    PubMed  CAS  Google Scholar 

  78. Monder C, Stewart PM, Lakshmi V, Valentino R, Burt D, Edwards CRW (1989) Licorice inhibits corticosteroid 11β-dehydrogenase of rat kidney and liver: In vivo and in vitro studies. Endocrinology 125:1046

    PubMed  CAS  Google Scholar 

  79. Krozowski Z (1992) 11β-hydroxysteroid dehydrogenase and the short-chain alcohol dehydrogenase (SCAD) superfamily. Mol Cell Endocrinol 84:C25

    PubMed  CAS  Google Scholar 

  80. Hales DB, Payne AH (1989) Glucocorticoid-mediated repression of P450scc mRNA and de novo synthesis in cultured Leydig cells. Endocrinology 124: 2099

    PubMed  CAS  Google Scholar 

  81. Payne AH, Sha L (1991) Multiple mechanisms for regulation of 3ß-hydroxysteroid dehydrogenase/Δ5→Δ4-isomerase, 17α-hydroxylase/C17–20 lyase cytochrome P450, and cholesterol side-chain cleavage cytochrome P450 messenger ribonucleic acid levels in primary cultures of mouse Leydig cells. Endocrinology 129: 1429

    PubMed  CAS  Google Scholar 

  82. Phillips DM, Lakshmi V, Monder C (1989) Corticosteroid 11/3-dehydrogenase in rat testis. Endocrinology 125: 209

    PubMed  CAS  Google Scholar 

  83. Monder C, Hardy MP, Blanchard RJ, Blanchard DC (1994) Comparative aspects of 11β-hydroxysteroid dehydrogenase. Testicular 11β-hydroxysteroid dehydrogenase: development of a model for the mediation of Leydig cell function by corticosteroids. Steroids 59: 69

    PubMed  CAS  Google Scholar 

  84. Teelucksingh S, Mackie ADR, Burt D, McIntyre MA, Brett L, Edwards CRW (1990) Potentiation of hydrocortisone activity in skin by glycyrrhetinic acid. Lancet 335: 1060

    PubMed  CAS  Google Scholar 

  85. Karstila T, Rechardt L, Honkaniemi J, Gustafsson J-A, Wikstroms A-C, Karppinen A, Pelto-Huikko M (1994) Immunocytochemical localization of glucocorticoid receptor in rat skin. Histochemistry 102: 305

    PubMed  CAS  Google Scholar 

  86. Fuller PJ, Verity K (1990) Colonic sodium potassium adenosine triphosphate subunit gene expression: ontogeny and regulation by adrenocortical steroids. Endocrinology 127: 32

    PubMed  CAS  Google Scholar 

  87. Lakshmi V, Monder C (1988) Purification and characterization of the corticosteroid 1 lß-dehydrogenase component of the rat liver 11β-hydroxysteroid dehydrogenase complex. Endocrinology 123: 2390

    PubMed  CAS  Google Scholar 

  88. Monder C, Lakshmi V (1990) Corticosteroid llβ-dehydrogenase of rat tissues: Immunological studies. Endocrinology 126:2435

    PubMed  CAS  Google Scholar 

  89. Agarwal AK, Monder C, Eckstein B, White PC (1989) Cloning and expression of rat cDNA encoding corticosteroid 11P-dehydrogenase. J Biol Chem 264: 18939

    PubMed  CAS  Google Scholar 

  90. Tannin GM, Agarwal AK, Monder C, New MI, White PC (1991) The human gene for 11β-hydroxysteroid dehydrogenase. J Biol Chem 266: 16653

    PubMed  CAS  Google Scholar 

  91. Yang K, Smith CL, Dales D, Hammond GL, Challis JR (1992) Cloning of an ovine 11 beta-hydroxysteroid dehydrogenase complementary deoxyribonucleic acid: tissue and temporal distribution of its messanger ribonucleic acid during fetal and neonatal development. Endocrinology 131: 2120

    PubMed  CAS  Google Scholar 

  92. Moore CCD, Mellon SH, Murai J, Siiteri PK, Miller WL (1993) Structure and function of the hepatic form of 11β-hydroxysteroid dehydrogenase in the squirrel monkey, an animal model of glucocorticoid resistance. Endocrinology 133: 368

    PubMed  CAS  Google Scholar 

  93. Rajan V, Chapman KE, Lyons V, Jamieson P, Mullins JJ, Edwards C RW, Seckl JR (1995) Cloning, sequencing and tissue-distribution of mouse 1lβ-hydroxysteroid dehydrogenase-1 cDNA. J Steroid Biochem Mol Biol 52: 141

    PubMed  CAS  Google Scholar 

  94. Jamieson PM, Chapman KE, Edwards CRW, Seckl JR (1995) 1lβ-hydroxysteroid dehydrogenase is an exclusive 11β-reductase in primary cultures of rat hepatocytes: effect of physiochemical and hormonal manipulations. Endocrinology 136:4754

    PubMed  CAS  Google Scholar 

  95. Rundle SE, Funder JW, Lakshmi V, Monder C (1989) The intrarenal localization of mineralocorticoid receptors and llβ-dehydrogenase: immunocytochemical studies. Endocrinology 125: 1700

    PubMed  CAS  Google Scholar 

  96. Näray-Fejes-Toth A, Watlington CO, Fejes-Toth G (1991) 11β-hydroxysteroid dehydrogenase activity in the renal target cells of aldosterone. Endocrinology 129:17

    PubMed  Google Scholar 

  97. Rusvai E, Nâray-Fejes-Toth A (1993) A new isoform of 11β-hydroxysteroid dehydrogenase in aldosterone target cells. J Biol Chem 268: 10717

    PubMed  CAS  Google Scholar 

  98. Stewart PM, Murry BA, Mason JI (1994) Human kidney 11β-hydroxysteroid dehydrogenase is a high affinity nicotinamide adenine dinucleotide-dependent enzyme and differs from the cloned type 1 isoform. J Clin Endocrinol Metab 79: 480

    PubMed  CAS  Google Scholar 

  99. Low SC, Assaad SN, Rajan V, Chapman KE, Edwards CRW, Seckl JR (1993) Regulation of 11β-hydroxysteroid dehydrogenase by sex steroids in vivo: further evidence for the existence of a second dehydrogenase in rat kidney. J Endocrinol 139: 27

    PubMed  CAS  Google Scholar 

  100. Nâray-Fejes-Toth A, Rusvaia E, Denault DL, Germain DLS, Fejes-Toth G (1993) Expression and characterization of a new species of 11β-hydroxysteroid dehydrogenase in Xenopus oocytes: Am J Physiol 265: F896

    PubMed  Google Scholar 

  101. Albiston AL, Obeyesekere VR, Smith RE, Krozowski ZS (1994) Cloning and tissue distribution of the human 11β-hydroxysteroid dehydrogenase type 2 enzyme. Mol Cell Endocrinol 105: R1 1

    Google Scholar 

  102. Agarwal AK, Rogerson FM, Mune T, White PC (1995) Analysis of the human gene encoding the kidney isozyme of 11β-hydroxysteroid dehydrogenase. J Steroid Biochem Mol Biol 55: 473

    PubMed  CAS  Google Scholar 

  103. Náray-Fejes-Tóth, A, Fejes-Tóth G (1995) Expression cloning of the aldosterone target cell-specific 11β-hydroxysteroid dehydrogenase from rabbit collecting duct cells. Endocrinology 136: 2579

    PubMed  Google Scholar 

  104. Cole TJ (1995) Cloning of the mouse 11β-hydroxysteroid dehydrogenase type 2 gene: tissue specific expression and localization in distal convoluted tubules and collecting ducts of the kidney. Endocrinology 136: 4693

    PubMed  CAS  Google Scholar 

  105. Whorwood CR, Ricketts ML, Stewart PM (1994) Epithelial cell localization of type 2 11β-hydroxysteroid dehydrogenase in rat and human colon. Endocrinology 135: 2533

    PubMed  CAS  Google Scholar 

  106. Obeyesekere VR, Ferrari P, Andrews RK, Wilson RC, New MI, Funder JW, Krozowski ZS (1995) The R337C mutation generates a high Km 1lβ-hydroxysteroid dehydrogenase Type II enzyme in a family with apparent mineralocorticoid excess. J Clin Endocrinol Metab 80: 3381

    PubMed  CAS  Google Scholar 

  107. Stewart PM, Rogerson FM, Mason JI (1995) Type 2 11β-hydroxysteroid dehydrogenase messanger ribonucleic acid and activity in human placenta and fetal membranes: its relationship to birth weight and putative role in fetal adrenal steroidogenesis. J Clin Endocrinol Metab 80: 885

    PubMed  CAS  Google Scholar 

  108. Krozowski Z, Maguire JA, Stein-Oakley AN, Dowling J, Smith RE, Andrews RK (1995) Immunohistochemical localization of the 11β-hydroxysteroid dehydrogenase Type II in human kidney and placenta. J Clin Endocrinol Metab 80: 2203

    PubMed  CAS  Google Scholar 

  109. Langlois DA, Matthews SG, Yu M, Yang K (1995) Differential expression of llβ-hydroxysteroid dehydrogenase 1 and 2 in the developing ovine fetal liver and kidney. J Endocrinol 147: 405

    PubMed  CAS  Google Scholar 

  110. Brown RW, Diaz R, Robson A, Kotelevstev YV, Mullins JJ, Kaufman MH, Seckl JR (1996) The ontogeny of 11β-hydroxysteroid dehydrogenase Type 2 and mineralocorticoid receptor gene expression reveal intricate control of glucocorticoid action in development. Endocrinology 137: 794

    PubMed  CAS  Google Scholar 

  111. Murphy BEP (1979) Cortisol and cortisone in human fetal development. J Steroid Biochem 11: 509

    PubMed  CAS  Google Scholar 

  112. Murphy BEP (1981) Ontogeny of cortisol-cortisone interconversion in human tissues: a role for cortisone in human fetal development. J Steroid Biochem 14: 811

    PubMed  CAS  Google Scholar 

  113. Benediktsson R, Lindsay RS, Noble J, Seckl JR, Edwards CR W (1993) Glucocorticoid exposure in utero: new model for adult hypertension. Lancet 341: 339

    PubMed  CAS  Google Scholar 

  114. Lindsay RS, Noble JM, Edwards CRW, Seckl JR (1994) Maternal carbenoxolone treatment reduces birth weight in the rat. J Endocrinol 140 (Suppl): 18

    Google Scholar 

  115. Andersson S (1995) 17β-hydroxysteroid dehydrogenase: isozymes and mutations. J Endocrinol 146:197

    PubMed  CAS  Google Scholar 

  116. Labrie F, Simard J, Luu-The V, Belanger A, Pelletier G (1992) Structure, function and tissue-specific gene expression of 3β-hydroxysteroid dehydrogenase/5-ene-4-ene isomerase enzymes in classical and peripheral intracrine steroidogenic tissues. J Steroid Biochem Mol Biol 43: 805

    CAS  Google Scholar 

  117. Walker BR, Moisan, MP (1992) Multiple isoforms of the cortisol-cortisone shuttle. J Endocrinol 133: 1

    PubMed  CAS  Google Scholar 

  118. Whorwood CB, Franklyn JA, Sheppard MC, Stewart PM (1992) Tissue localization of 11β-hydroxysteroid dehydrogenase and its relationship to the glucocorticoid receptor. J Steroid Biochem Mol Biol 41: 21

    PubMed  CAS  Google Scholar 

  119. Gomez-Sanchez EP, Cox D, Foecking M, Ganjam V, Gomez-Sanchez CE (1996) llβ-hydroxysteroid dehydrogenase of the choriocarcinoma cell line JEG-3 and their inhibition by glycyrrhetinic acid and other natural substances. Steroids 61: 110

    PubMed  CAS  Google Scholar 

  120. Dougherty TF, Berliner ML, Berliner DL (1960) 1lβ-Hydroxy dehydrogenase system activity in thymi of mice following prolonged cortisol treatment. Endocrinology 66: 550

    PubMed  CAS  Google Scholar 

  121. Marandici A, Monder C (1993) Inhibition by glycyrrhetinic acid of rat tissue 11β-hydroxysteroid dehydrogenase in vivo. Steroids 58: 153

    PubMed  CAS  Google Scholar 

  122. Hennebold JD, Ryu SY, Mu H-H, Galbraith A, Daynes RA (1996) l lβ-Hydroxysteroid dehydrogenase modulation of glucocorticoid activities in lymphoid organs. Am J Physiol 270: R1296

    PubMed  CAS  Google Scholar 

  123. Daynes RA, Araneo BA, Dowell TA, Huang K, Dudley D (1990) Regulation of murine lymphokine production in vivo. III. The lymphoid tissue microenvironment exerts regulatory influences over T helper cell function. J Exp Med 171: 979

    PubMed  CAS  Google Scholar 

  124. Deckx R, De Moor P (1966) Study of the 11β-hydroxysteroid dehydrogenase in vitro. I. Biochemical characterization in spleen homogenate. Pflugers Arch 289: 59

    CAS  Google Scholar 

  125. Agarwal AK, Mune T, Monder C, White PC (1994) NAD+ dependent isoform of 11β hydroxysteroid dehydrogenase. J Biol Chem 269: 25959.

    PubMed  CAS  Google Scholar 

  126. Hennebold JD, Mu H-H, Poynter ME, Chen X-P, Daynes RA (1997) Active catabolism of glucocorticoids by 11β-hydroxysteroid dehydrogenase in vivo is a necessary requirement for natural resistance to infection with Listeria monocytogenes. Int Immunol 9: 105

    PubMed  CAS  Google Scholar 

  127. Brattsand R, Thalen A, Roemke K, Kallstrom L, Gruvstad E (1982) Development of new glucocorticoids with a very high ratio between topical and systemic activities. Eur J Resp Dis 63: 62

    Google Scholar 

  128. Boockvar KS, Granger DL, Poston RM, Maybodi M, Washington M K, Hibbs Jr, JB, Kurlander RL (1994) Nitric oxide produced during murine Listeriosis is protective. Infect Immun 62: 1089

    PubMed  CAS  Google Scholar 

  129. Kelly JP, Bancroft GJ (1996) Administration of interleukin-10 abolishes innate resistance to Listeria monocytogenes. Eur J Immunol 26: 356

    PubMed  CAS  Google Scholar 

  130. Daynes RA, Araneo BA, (1992) Prevention and reversal of some age-associated changes in immunologic responses by supplemental dehydroepiandrosterone sulfate therapy. Aging Immunol Infect Dis 3: 135

    Google Scholar 

  131. Daynes RA, Araneo BA, Ershler WB, Maloney C, Li G-Z, Ryu S-Y (1993) Altered regulation of IL-6 production with normal aging. Possible linkage to the age-associated decline in dehydroepiandrosterone and its sulfated derivative. J Immunol 150: 5219

    PubMed  CAS  Google Scholar 

  132. Clerici M, Shearer GM (1994) The Thl-Th2 hypothesis of HIV infection: new insights. Immunol Today 15: 575

    PubMed  CAS  Google Scholar 

  133. Araneo BA, Shelby J, Li G-Z, Ku W, Daynes RA (1993) Administration of dehydroepiandrosterone to burned mice preserves normal immunologic competence. Arch Surgery 128: 318

    CAS  Google Scholar 

  134. Vaugham VM, Becker RA, Allen JP, Goodwin CV, Pruitt BA, Mason AD (1982) Cortisol and corticotropin in burned patients. J Trauma 22: 263

    Google Scholar 

  135. Montanini VM, Simoni M, Chiossi G, Baraghini GF, Verlardo A, Barald E, Marrama P (1988) Age-related changes in plasma dehydroepiandrosterone sulphate, cortisol, testosterone and free testosterone circadian rhythms in adult men. Horm Res 29: 1

    PubMed  CAS  Google Scholar 

  136. Clerici M, Bevilacqua M, Vago T, Villa ML, Shearer GM, Norbiato G (1994) An immunoendocrinological hypothesis of HIV infection. Lancet 373: 1552

    Google Scholar 

  137. Dodt C, Theine KJ, Uthgenannt D, Born J, Fehm HL (1994) Basal secretory activity of the hypothalamo-pituitary-adrenocortical axis is enhanced in healthy elderly. An assessment during undisturbed night-time sleep. Eur J Endocrinol 131: 443

    PubMed  CAS  Google Scholar 

  138. Yau JLW, Olsson T, Morris RGM, Meaney MJ, Seckl JR (1995) Glucocorticoids, hippocampal corticosteroid receptor gene expression and antidepressant treatment: relationship with spatial learning in young and aged rats. Neuroscience 66: 571

    PubMed  CAS  Google Scholar 

  139. Chorinchath BB, Kong L-Y, Mao L, McCallum RE (1996) Age-associated differences in TNF-a and nitric oxide production in endotoxic mice. J Immunol 156: 1525

    PubMed  CAS  Google Scholar 

  140. Calandra T, Bernhagen J, Metz CN, Spiegel LA, Bacher M, Donnelly T, Cerami A, Bucala R (1995) MIF as a glucocorticoid-induced modulator of cytokine production. Nature 377: 68

    PubMed  CAS  Google Scholar 

  141. Bernhagen J, Calandra T, Mitchell RA, Martin SB, Tracey KJ, Voelter W, Manogue KR, Cerami A, Bucala R (1993) MIF is a pituitarty-derived cytokine that potentiates lethal endotoxaemia. Nature 365: 756

    PubMed  CAS  Google Scholar 

  142. Bernhagen J, Bacher M, Calandra T, Metz CN, Doty SB, Donnelly T, Bucala R (1996) An essential role for macrophage migration inhibitory factor in the tuberculine delayed-type hypersensitivity reaction. J Exp Med 183: 277

    PubMed  CAS  Google Scholar 

  143. Bernhagen J, Mitchell RA, Calandra T, Voelter W, Cerami A, Bucala R (1994) Purification, bioactivity, and secondary structure analysis of mouse and human macrophage migration inhibitory factor ( MIF ). Biochemistry 33: 14144

    PubMed  CAS  Google Scholar 

  144. Calandra T, Bernhagen J, Mitchell RA, Bucala R (1994) The macrophage is an important and previously unrecognized source of macrophage migration inhibitory factor. J Exp Med 179: 1895

    PubMed  CAS  Google Scholar 

  145. Shimuzu T, Ohkawara A, Nishihira J, Sakamoto W (1996) Identification of macrophage migration inhibitory factor ( MIF) in human skin and its immunohistochemical localization. FEBS Lett 381: 199

    Google Scholar 

  146. Weiser WY, Temple PA, Witek-Giannotti JS, Remold HG, Clark S C, David JR (1989) Molecular cloning of a cDNA encoding a human macrophage inhibitory factor. Proc Natl Sci Counc Repub China [B] 86: 7522

    CAS  Google Scholar 

  147. Mitchell R, Bacher M, Bernhagen J, Pushkarskaya T, Seldin MF, Bucala R (1995) Cloning and characterization of the gene for mouse macrophage migration inhibitory factor ( MIF ). J Immunol 154: 3863

    PubMed  CAS  Google Scholar 

  148. Meikle WA, Daynes RA, Araneo BA (1991) Adrenal androgen secretion and biologic effects. In: Nelson DH (ed) Endocrinology and metabolism clinics of north america. New aspects of adrenal cortical disease. Saunders, Philadelphia, p 381

    Google Scholar 

  149. Orentreich N, Brind JL, Rizer RL, Vogelman JH (1984) Age changes and sex differences in serum dehydroepiandrosterone sulfate concentrations throughout adulthood. J Clin Endocrinol Metab 59: 551

    PubMed  CAS  Google Scholar 

  150. Spencer NFL, Norton SD, Harrison LL, Li G-L, Daynes RA (1995) Dysregulation of IL-10 production with aging: possible linkage to the age-associated decline in DHEA and its sulfated derivative. Exp Gerontol 31: 393

    Google Scholar 

  151. Hennebold JD, Poynter ME, Daynes RA (1995) DHEA and immune function: activities and mechanism of action. Semin Reprod Endocrinol 13: 257

    Google Scholar 

  152. Frenkel RA, Slaughter CA, Orth K, Moomaw CR, Hicks SH, Snyder JM, Bennett M, Prough RA, Putnam RS, Milewich L (1990) Peroxisome proliferation and induction of peroxisomal enzymes in mouse and rat liver by dehydroepiandrosterone feeding. J Steroid Biochem 35: 333

    PubMed  CAS  Google Scholar 

  153. Peters JM, Zhou YC, Ram PA, Lee SST, Gonzalez FJ, Waxman DJ (1996) Peroxisome proliferator-activated receptor a required for gene induction by dehydroepiandrosterone-3ß-sulfate. Mol Pharmacol 50: 67–74

    PubMed  CAS  Google Scholar 

  154. van der Bosch H, Schutgens RBH, Wanders RJA, Tager JM (1992) Biochemistry of peroxisomes. Annu Rev Biochem 61: 157

    PubMed  Google Scholar 

  155. Beier K, Völkl A, Fahimi HD (1993) The impact of aging on enzyme proteins of rat liver peroxisomes: quantitative analysis by immunoblotting and immunoelectron microscopy. Virchows Arch [B] 63: 139

    CAS  Google Scholar 

  156. Bunker VW (1992) Free radicals, antioxidants and ageing. Med Lab Sci 42: 299

    Google Scholar 

  157. Harman D (1956) Aging: A theory based on free radical and radiation chemistry. J Gerontol 11: 298

    PubMed  CAS  Google Scholar 

  158. Greenwald RA, Moy WW (1980) Effect of oxygen-free radicals on hyaluronic acid. Arthritis Rheum 23: 455

    PubMed  CAS  Google Scholar 

  159. Wolf SP, Dean RT (1986) Fragmentation of proteins by free radicals and its effect on their susceptibility to enzymatic hydrolysis. Biochem J 234: 399

    Google Scholar 

  160. Stadtman ER (1992) Protein oxidation and aging. Science 257: 1220

    PubMed  CAS  Google Scholar 

  161. Schreck R, Rieber P, Baeuerle PA (1991) Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappaB transcription factor and HIV-1. EMBO J 10: 2247

    PubMed  CAS  Google Scholar 

  162. Kopp EB, Ghosh S (1995) NF-KB and Rel proteins in innate immunity. Adv Immunol 58: 1

    PubMed  CAS  Google Scholar 

  163. Lemberger T, Staels B, Saladin R, Desvergne B, Auwerx J, Wahli W (1994) Regulation of the peroxisome proliferator-activated receptor a gene by glucocorticoids. J Biol Chem 269: 24527

    PubMed  CAS  Google Scholar 

  164. Lemberger T, Saladin R, Vazquez M, Assimacopoulos F, Staels B, Desvergne B, Wahli W, Auwerx J (1996) Expression of the peroxisome proliferator-activated receptor a gene is stimulated by stress and follows a diurnal rhythm. J Biol Chem 271: 1764

    PubMed  CAS  Google Scholar 

  165. Steineger HH, Sorensen HN, Tugwood JD, Skrede S, Spydevold 0, Gautvik KM (1994) Dexamethasone and insulin demonstrate marked and opposite regulation of the steady-state mRNA level of the peroxisomal proliferator-activated receptor (PPAR) in hepatic cells: hormonal modulation of fatty-acid-induced transcription. Eur J Biochem 225: 967

    PubMed  CAS  Google Scholar 

  166. Devchand PR, Keller H, Peters JM, Vazquez M, Gonzalez FJ, Wahli W (1996) The PPARα-leukotriene B4 pathway to inflammation control. Nature 384: 39

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag London Limited

About this chapter

Cite this chapter

Hennebold, J.D., Daynes, R.A. (1997). Microenvironmental control of glucocorticoid functions in immune regulation. In: Rook, G.A.W., Lightman, S. (eds) Steroid Hormones and the T-Cell Cytokine Profile. Springer, London. https://doi.org/10.1007/978-1-4471-0931-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0931-0_5

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1238-9

  • Online ISBN: 978-1-4471-0931-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics