Skip to main content

Short Term Memory and Selection Processes in a Frontal-Lobe Model

  • Conference paper
Connectionist Models in Cognitive Neuroscience

Part of the book series: Perspectives in Neural Computing ((PERSPECT.NEURAL))

Abstract

We present a neural model that addresses the capacity of a frontal lobe system to hold up information for short periods of time and to perform response selection. In the model, reverberation states are sustained after stimulus offset, due to loops of recurrent excitation in neural cell assemblies and lateral inhibition is necessary to block an uncontrolled spread of activation. At high levels of inhibition the system performs response selection, and at lower levels it retains a number of units in active states, after stimulus offset. It is shown formally that such a system has capacity limitations: only a limited number of cell assemblies can be retained. Sequential presentation of a list of items is simulated and serial position curves characterised by recency are obtained. The model explains recency, list-length and presentation rate effects in immediate cued recall, as well as semantic effects and patterns of forgetting in Brown-Peterson type of experiments. A reduction in the strength of recurrent excitations explains the absence of lexical effects in tests of immediate memory for frontal lobe patients [1] and more extreme reductions result in impairments of response selection in dynamic aphasia [2]

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Martin R. C., Shelton J. R., & Yaffee L. S. Language processing and working memory, J. Memory and Language, 1994, 33, 83–111.

    Article  Google Scholar 

  2. Robinson G., Blair J., & Cipolotti L. Dynamic aphasia: an inability to select between competing verbal responses. Brain, 1998, 121, 77–89.

    Article  Google Scholar 

  3. Goldman-Racik, P. S. Working memory and the mind. Sei. Am. 1992, 267, 111–117.

    Google Scholar 

  4. Miller, E. K., Erickson, C. A., & Desimone, R. (1996) Neural mechanisms of visual working-memory in prefrontal cortex of the macaque. J. Neurosci. 1996, 16, 5154–5167.

    Google Scholar 

  5. Cohen J. D., Perlstein W. MBraver T. S., Nystrom L. E., Noll-DC et al. Temporal dynamics of brain activation during a working-memory task. Nature, 1996, 386 (6625), 604–608.

    Article  Google Scholar 

  6. Gabrieli J. D. E., Poldrack R. A., & Desmond J. E. The role of the left prefrontal cortex in language processing. Proc. Natl. Acad. Sci. USA, 1998, 95, 906–913.

    Article  Google Scholar 

  7. Posner M, & Pavese A. Anatomy of word and sentence meaning. Proc. Natl. Acad. Sei. USA, 1998, 95, 899–905.

    Article  Google Scholar 

  8. Romani C. k Martin R. A deficit in short term retention of lexical-semantic information. J. Exp. Psychol. Gen., in press.

    Google Scholar 

  9. Shimamura A. Memory and frontal lobe function. In M. S. Gazzaniga (Ed.), The Cognitive Neurosciences, Cambridge, MIT Press, 1995.

    Google Scholar 

  10. Warrington E. & Shallice T. The selective impairment of auditory verbal short-term memory. Brain, 1969, 92, 885–896.

    Article  Google Scholar 

  11. Baddeley A. D. Working memory. Oxford: Clanderon press, 1986.

    Google Scholar 

  12. Cohen J. D., Braver T. S., & O’Reilly R. C. A computational approach to prefrontal cortex, cognitive control and schizophrenia — recent developments and current challenges. Proc. Roy. Soc. London (B), 1996, 351, 1515–1527

    Google Scholar 

  13. Hebb D. O. The organization of behavior, New-York: Willey, 1949.

    Google Scholar 

  14. Atkinson R., C.& ShifFrin R. M. The control of short-term memory. Scientific American,1986, 225, 82–90.

    Article  Google Scholar 

  15. Waugh N., C. k Norman D., A. Primary memory. Psychol. Rev., 1965, 72, 89–104.

    Article  Google Scholar 

  16. Anderson J.R. The architecture of cognition. Cambridge, MA: Harvard, 1983.

    Google Scholar 

  17. Cowan N., Activation attention and short-term memory, Memory and Cognition, 1993, 21, 162–167.

    Article  Google Scholar 

  18. Anderson J. A., Silverstein J.W., Ritz, S. W., k Jones, R.S. Distinctive features, categorical perception, and probability learning: Some applications of a neural model, Psychol. Rev. 1977, 84, 413–474.

    Article  Google Scholar 

  19. Amit, D. J., Brunei, N., k Tsodyks, M. V. Correlations of cortical Hebbian reverberations, J. Neurosci., 1994, 14, 6435–6445.

    Google Scholar 

  20. Hopfield, J. J., Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Ac. Sci. USA, 1982, 79, 2554–2558.

    Article  MathSciNet  Google Scholar 

  21. Keele S. W., & Neill W., T. Mechanisms of attention, In E.C. Cartrette & M. P., Friedman (Eds.),Handbook of perception, Vol. 9, 3–47. New-York: Academic Press, 1978.

    Google Scholar 

  22. Grossberg S. A Theory of human memory: self-organization and performance of sensory-motor codes, maps, and plans. In, Human Memory. Progress in Theo. Biol., R. Rosen & F. Snell, Eds., 1978.

    Google Scholar 

  23. Taylor J. G.Breakthrough to awarness: a preliminary neural network of conscious and unconscious perception in word processing. Biol. Cybern. 1996, 75, 59–72.

    Article  MATH  Google Scholar 

  24. Ahmed, B., Anderson J. C., Douglas R., J. & Martin K., A., C. Comparison of current-discharge relationship of pyramidal neurons from the visual cortex in vitro and in the anesthetized cat. J. Physiol., London, 1996, 485, 10–11.

    Google Scholar 

  25. Huttenlocher J. k Newcombe N. Semantic effects in ordered recall. J.Verb. Learn. Verb. Behav., 1976, 15, 387–399.

    Article  Google Scholar 

  26. Tulving E. k Patterson, R. D. Functional units and retrieval processes in free recall. J. Exp. Psychol. 1968, 77, 239–248

    Article  Google Scholar 

  27. Hulme C. Maughan S, k Brown G. D. A., Memory for familiar and unfamiliar words, J. Memory and Language, 1991, 30, 685–701.

    Article  Google Scholar 

  28. Shulman H. G.,Encoding and retention of semantic and phonemic information in STM, J. Verb. Learn. Verb. Behav., 1970, 9, 499–508.

    Article  Google Scholar 

  29. Raser G. A. Recoding of semantic and acoustic information in STM, J. Verb. Learn. Verb. Behav., 1972, 11, 692–697.

    Article  Google Scholar 

  30. Baddeley A. D., Retrieval rules and semantic coding in STM, Psychol. Bull., 1972, 78, 379–385

    Article  Google Scholar 

  31. Craik F. I. M. k Levy B. A., Semantic and acoustic information in primary memory, J. Exp. Psychol., 1972, 86, 77–82.

    Article  Google Scholar 

  32. Levy B. A. & Baddeley A. D., Recall of semantic clusters in primary memory, Quart. J. Exp. Psychol., 1971, 23, 8–13.

    Article  Google Scholar 

  33. Murdock B. B Jr. The retention of individual items, J. Exp. Psychol., 1961, 62, 618–625.

    Article  Google Scholar 

  34. Melton A. W.Implication of short-term memory for a general theory of memory. J. Verb. Learn. Verb. Behav., 1963, 2, 1–21.

    Article  Google Scholar 

  35. McClelland J. L., McNaughton B. L., & O’Reilly R. C. Why there are complementary learning-systems in the hippocampus and neocortex — insights from the successes and failures of connectionist models of learning and memory. Psychol. Rev., 1995, 419–457.

    Google Scholar 

  36. Page M., P., A. k Norris, D. The primacy model: a new model of immediate serial recall, in press.

    Google Scholar 

  37. Carter C. S., Braver T. S., Barch D. M., Botvinick M. M., Noll D., & Cohen J. D. Anterior Cingulate gyrus dysfunction and selective attention deficits in Schizophrenia. Science, 1998, 280, 747–749.

    Article  Google Scholar 

  38. Daneman M. & Carpenter P. A., Individual differences in working memory and reading. J. Verb. Learn. Verb. Behav., 1980, 19, 450–466.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag London Limited

About this paper

Cite this paper

Usher, M., Cohen, J.D. (1999). Short Term Memory and Selection Processes in a Frontal-Lobe Model. In: Heinke, D., Humphreys, G.W., Olson, A. (eds) Connectionist Models in Cognitive Neuroscience. Perspectives in Neural Computing. Springer, London. https://doi.org/10.1007/978-1-4471-0813-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0813-9_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-052-1

  • Online ISBN: 978-1-4471-0813-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics