Skip to main content

Biochemical Markers of Fetoplacental Growth Restriction

  • Chapter
Intrauterine Growth Restriction

Abstract

During the last 20 years maternal serum biochemical screening for neural tube defects and trisomy-21 affected fetuses has become well established and widely practised in developed countries. More recently these maternal serum biochemical markers have been found to be associated with a diverse range of pregnancy complications other than aneuploidy [1]. The single most common cause of intrauterine fetal growth restriction in developed (well-nourished) countries is preeclampsia, which is secondary to a defect in placentation and subsequent uteroplacental insufficiency. In this chapter we shall examine some of the evidence linking biochemical markers to fetoplacental growth restriction and its causes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pahal GS, Jauniaux E. Maternal serum biochemical screening for pregnancy complications other than aneuploidy. Curr Opin Obstet Gynecol 1997;9:379–86.

    PubMed  CAS  Google Scholar 

  2. Bergstrand CG, Czar B. Demonstration of a new protein fraction in serum from the human fetus. Scand J Clin Lab Invest 1956;8:174.

    Article  PubMed  CAS  Google Scholar 

  3. Gitlin D. Normal biology of alpha-fetoprotein. Ann NY Acad Sci 1975;259:7–16.

    Article  PubMed  CAS  Google Scholar 

  4. Boyd PA. Why might maternal serum AFP be high in pregnancies in which the fetus is normally formed. Br J Obstet Gynaecol 1992;99:93–5.

    Article  PubMed  CAS  Google Scholar 

  5. Cabellero C, Vekemaus M, Lopex del Campo JG, Robyn C. Serum alpha-fetoprotein in adults, in women during pregnanczy, in children at birth, and during the first week of life: a sex difference. Am J Obstet Gynecol 1997;127:384–9.

    Google Scholar 

  6. Brock DJ, Sutcliffe RG. Alpha-fetoprotein in the antenatal diagnosis of anencephaly and spina bifida. Lancet 1972;2:197–9.

    Article  PubMed  CAS  Google Scholar 

  7. Gordon YB, Kitau MJ, Letchworth AT, Grudzinskas JG, Usherwood MMcD. Fetal wastage as a result of an alpha-fetoprotein screening programme. Lancet 1978;April:677–8.

    Google Scholar 

  8. Brock DJ, Barron L, Jelen P, Watt M, Scrimgeour JB. Maternal serum alpha-fetoprotein measurements as an early indicator of low birthweight. Lancet 1977;2:267–8.

    Article  PubMed  CAS  Google Scholar 

  9. Jauniaux E, Moscoso G, Campbell S, Gibb D, Driver M, Nicolaides KH. Correlation of ultrasound and pathologic findings of placental anomalies in pregnancies with elevated maternal serum alpha-fetoprotein. Eur J Obstet Gynecol Biol Reprod 1990;37:219–30.

    Article  CAS  Google Scholar 

  10. Jauniaux E, Gulbis B, Tunkel S, Ramsay B, Campbell S, Meuris S. Maternal serum testing for alpha-fetoprotein and human chorionic gonadotropin in high-risk pregnancies. Prenat Diagn 1996;12:1129–35.

    Article  Google Scholar 

  11. Walters BNJ, Lao T, Smith V, De Swiet M. «-fetoprotein elevation and proteinuric pre-eclampsia. Br J Obstet Gynaecol 1985;92:341–4.

    Article  PubMed  CAS  Google Scholar 

  12. Milunsky A, Juck SS, Bruell CL, MacLaughlin DS, Tsung Y-K, Jick H. Predictive values, relative risks, and overall benefits of high and low maternal serum «-fetoprotein screening in singleton pregnancies: New epidemiologic data. Am J Obstet Gynecol 1989;161:291–7.

    PubMed  CAS  Google Scholar 

  13. Waller DK, Lustig LS, Cunningham GC, Golbus MS, Hook EB. Second-trimester maternal serum alpha-fetoprotein levels and the risk of subsequent fetal death. N Engl J Med 1991;325:6–10.

    Article  PubMed  CAS  Google Scholar 

  14. Bernstein IM, Barth RA, Miller R, Capeless EL. Elevated maternal serum alpha-fetoprotein: Association with placental sonolucencies, fetomaternal hemorrhage, vaginal bleeding, and pregnancy outcome in the absence of fetal anomalies. Obstet Gynecol 1992;79:71–4.

    PubMed  CAS  Google Scholar 

  15. Williams MA, Hickok DE, Zingheimj RW, Luthy DA, Kimelman J, Nyberg DA, et al. Elevated maternal serum «-fetoprotein levels and midtrimester placental abnormalities in relation to subsequent adverse pregnancy outcomes. Am J Obstet Gynecol 1992;167:1032–7.

    PubMed  CAS  Google Scholar 

  16. Brazerol WF, Grover S, Donnenfeld AE. Unexplained elevated maternal serum α-fetoprotein levels and perinatal outcome in an urban clinic population. Am J Obstet Gynecol 1994;171:1030–5.

    PubMed  CAS  Google Scholar 

  17. Waller DK, Lustig LS, Cunningham GC, Feuchtbaum LB, Hook EB. The association between maternal serum alpha-fetoprotein and preterm birth, small for gestational age infants, preeclampsia, and placental complications. Obstet Gynecol 1996;88:816–22.

    Article  PubMed  CAS  Google Scholar 

  18. Wenstrom KD, Owen J, Davis RO, Brumfield CG. Prognostic significance of unexplained elevated amniotic fluid alpha fetoprotein. Obstet Gynecol 1996;87:213–6.

    Article  PubMed  CAS  Google Scholar 

  19. Morssink LP, Heringa MP, Beekhuis JR, De Wolf BTHM, Matingh A. The HELLP syndrome: its association with unexplained elevation of MSAFP and MShCG in the second trimester. Prenat Diagn 1997;17:601–6.

    Article  PubMed  CAS  Google Scholar 

  20. Hsieh TT, Hung TH, Hsu JJ, Shau WY, Su CW, Hsieh FJ. Prediction of adverse perinatal outcome by maternal serum screening for Down syndrome in an Asian population. Obstet Gynecol 1997;89:937–40.

    Article  PubMed  CAS  Google Scholar 

  21. Shipp TD, Wilkins-Haug L. The association of early-onset fetal growth restriction, elevated ma¬ternal serum alpha-fetoprotein, and the development of severe pre-eclampsia. Prenat Diagn 1997;17:305–9.

    Article  PubMed  CAS  Google Scholar 

  22. Simpson JL, Baum LD, Depp R, Elias S, Somes G, Marder R. Low maternal serum alpha-fetoprotein and perinatal outcome. Am J Obstet Gynecol 1987;156:852–62.

    PubMed  CAS  Google Scholar 

  23. Benn PA, Hörne D, Briganti S, Rodis JF, Clive JM. Elevated second-trimester maternal serum hCG alone in combination with elevated alpha-fetoprotein. Obstet Gynaecol 1996;87:217–22.

    Article  CAS  Google Scholar 

  24. Macara L, Kingdom JCP, Kaufmann P, Kohnen G, Hair J, More IAR, et al. Structural analysis of placental terminal villi from growth restricted pregnancies with abnormal umbilical artery Doppler waveforms. Placenta 1996;17:37–48.

    Article  PubMed  CAS  Google Scholar 

  25. Smith SC, Baker PN, Symonds EM. Increased placental apoptosis in intrauterine growth restriction. Am J Obstet Gynecol 1997;177:1395–1401.

    Article  PubMed  CAS  Google Scholar 

  26. Brownbill P, Edwards D, Jones C, Mahendran D, Owen D, Sibley C, et al. Mechanism of alphafeto- protein transfer in the perfused human placental cotyledon from uncomplicated pregnancy. J Clin Invest 1995;96:2220–6.

    Article  PubMed  CAS  Google Scholar 

  27. Brownbill P, Owen D, Mahendran D, Nelson M, Sibley C. Comparisons of the alphafetoprotein permeability of term perfused placental cotyledons from women who had above normal maternal serum alphafetoprotein levels in mid–trimester with those from women who had normal levels. Placenta 1997;18:A14.

    Article  Google Scholar 

  28. Los FJ, De Wolf BTHM, Huisjes HJ. Raised maternal serum alpha-fetoprotein levels and spontaneous fetomaternal transfusion. Lancet 1979;ii:1210–1212

    Article  Google Scholar 

  29. Zeltser PM, Neerhont RC, Ronkalsrud EW, Stiehm ER. Differentiation between neonatal hepatitis and biliary atresia by measuring serum alpha-fetoprotein. Lancet 1974;i:373–375.

    Article  Google Scholar 

  30. Cox WL, Daffos F, Forestier F, Descomby D, Augrant C, Auger MC, et al. Physiology and manage-ment of intrauterine growth retardation: a biologic approach with fetal blood sampling. Am J Obstet Gynecol 1988;159:36–41.

    PubMed  CAS  Google Scholar 

  31. Hubinot C, Fisk NM, Nicolini U, Rodeck CH, Johnson CH. Fetal Alpha-fetoprotein in growth retardation. Br J Obstet Gynaecol 1990;97:1233–4.

    Google Scholar 

  32. Bogart MH, Pandian MR, Jones OW. Abnormal maternal serum chorionic gonadotropin levels in pregnancies with fetal chromosome abnormalities. Prenat Diagn 1987;7:623–30.

    Article  PubMed  CAS  Google Scholar 

  33. Eiben B, Hammans W, Goebel R. Triploidy, imprinting, and hCG levels in maternal serum screening. Prenat Diagn 1996;16:377–8.

    Article  PubMed  CAS  Google Scholar 

  34. Laundon Ch, Spencer K, Macri JN, Anderson RW, Buchanan PD. Free Beta hCG screening of hydropic and non-hydropic Turner syndrome pregnancies. Prenat Diagn 1996;16:853–6.

    Article  PubMed  CAS  Google Scholar 

  35. Smith GC, Smith OW. Excessive gonad-stimulating hormone and subnormal amounts of oestrin in toxaemias of late pregnancy. Am J Obstet Gynecol 1934;107:128–45.

    Google Scholar 

  36. Gonen R, Perez R, David M, Dar H, Merksamer R, Sharf M. The association between unexplained second-trimester maternal serum hCG elevation and pregnancy complications. Obstet Gynecol 1992;80:83–6.

    PubMed  CAS  Google Scholar 

  37. Tanaka M, Natori M, Kohno H, Ishimoto H, Kobayashi T, Nozawa S. Fetal growth in patients with elevated maternal serum hCG levels. Obstet Gynecol 1993;81:341–3.

    PubMed  CAS  Google Scholar 

  38. Sorensen TK, Williams MA, Zingheim RW, Clement SJ, Hickok DE. Elevated second trimester human chorionic gonadotropin and subsequent pregnancy induced hypertension. Am J Obstet Gynecol 1993;169:834–8.

    PubMed  CAS  Google Scholar 

  39. Lieppman RE, Williams MA, Cheng EY, Resta R, Zingheim R, Hickok ED, et al. An association between elevated levels of human chorionic gonadotropin in the midtrimester and adverse pregnancy outcome. Am J Obstet Gynecol 1993;168:1852–7.

    PubMed  CAS  Google Scholar 

  40. Said ME, Campbell DM, Azzam ME, MacGillivray I. Beta–human chorionic gonadotrophin levels before and after the development of pre-eclampsia. Br J Obstet Gynaecol 1984;91:772–5.

    Article  PubMed  CAS  Google Scholar 

  41. Hsu C-D, Chan DW, Iriye B, Johnson T, Hong S-F, Repke JT. Elevated serum human chorionic gonadotropin as evidence of secretory response in severe preeclampsia. Am J Obstet Gynecol 1994;170:1135–8.

    PubMed  CAS  Google Scholar 

  42. Ashour AMN,Lieberman ES, Wilkins Haug LE, Repke JT. The value of elevated second-trimester /3-human chorionic gonadotropin in predicting development of pre-eclampsia. Am J Obstet Gynecol 1997;176:438–442.

    Article  PubMed  CAS  Google Scholar 

  43. Jones CJP, Fox H. An ultrastructural and ultrahistochemical study of the human placenta in maternal pre-eclampsia. Placenta 1980;1:61–76.

    Article  PubMed  CAS  Google Scholar 

  44. Hoshina M, Ashitaka Y, Tojo S. Immunohistochemical interaction on antisera to hCG and its subunits with chorionic tissue of early gestation. Endocrinol Jpn 1979;26:175–84.

    Article  PubMed  CAS  Google Scholar 

  45. Genbacev 0, Joslin R, Damsky CH, Pollitti BM, Fisher SJ. Hypoxia alters early gestation human cytotrophoblast differentiation/invasion in vitro and models the placental defects that occur in preeclampsia. J Clin Invest 1996;97:540–550.

    Article  PubMed  CAS  Google Scholar 

  46. Rodesh F, Simon P, Donner C, Jauniaux E. Oxygen measurements in the maternotrophoblastic border during early pregnancy. Obstet Gynecol 1992;80:283–5.

    Google Scholar 

  47. Kingdom JCP, Kaufmann P. Oxygen and placental villous development: Origins of fetal hypoxia. Placenta 1997;18:613–21.

    Article  PubMed  CAS  Google Scholar 

  48. Wenstrom KD, Owen J, Boots LR. Elevated second-trimester human chorionic gonadotrophin levels in association with poor pregnancy outcome. AM J Obstet Gynecol 1994;171:1038–1041.

    PubMed  CAS  Google Scholar 

  49. Konachak PS, Bernstein IM, Capeless L. Uterine artery Doppler velocimetry in the detection of adverse obstetric outcomes in women with unexplained elevated maternal serum «-fetoprotein levels. Am J Obstet Gynecol 1995;173:1115–19.

    Article  Google Scholar 

  50. Pergament E, Stein AK, Fiddler M, Cho NH, Kupfermine MJ. Adverse pregnancy outcome after a false-positive screen for Down syndrome using multiple markers. Obstet Gynecol 1995;86:255–8.

    Article  PubMed  CAS  Google Scholar 

  51. Fitzgerald DJ, Entman SS, Mulloy K, Fitzgerald GA. Decreased prostacyclin biosynthesis pre¬ceding the clinic manifestation of pregnancy-induced hypertension. Pathophysiol Nat Hist 1987;75:956–63.

    CAS  Google Scholar 

  52. Stubbs TM, Lazarchick J, Horger EO. Plasma fibronectin levels in preeclampsia: A possible biochemical marker for vascular endothelial damage. Am J Obstet Gynecol 1984;150:885–7.

    PubMed  CAS  Google Scholar 

  53. Lazarchick J, Stubbs TM, Romein L, Van Dorsten JP, Leadholt CB. Predictive value of fibronectin levels in normotensive gravid women destined to become preeclamptic. Am J Obstet Gynecol 1986;154:1050–2.

    PubMed  CAS  Google Scholar 

  54. Taylor RN, Crombleholme WR, Friedman ST, Jones LA, Casal DC, Roberts JM. High plasma cellular fibronectin levels correlate with biochemical and clinical features of preeclampsia but cannot be attributed to hypertension alone. Am J Obstet Gynecol 1991;165:895–901.

    PubMed  CAS  Google Scholar 

  55. Friedman SA, de Groot JM, Taylor RN, Roberts JM. Circulating concentrations of fetal fibronectin do not reflect reduced trophoblastic invasion in preeclamptic pregnancies. Am J Obstet Gynecol 1992;167:496–7.

    PubMed  CAS  Google Scholar 

  56. Lockwood CJ, Peters JH. Increased plasma levels of EDI+ cellular fibronectin precede the clinical signs of preeclampsia. Am J Obstet Gynecol 1990;162:358–62.

    PubMed  CAS  Google Scholar 

  57. Taylor RN, Heilbron DC, Roberts JM. Growth factor activity in the blood of women in whom preeclampsia develops is elevated from early pregnancy. Am J Obstet Gynecol 1990;163:1839–44.

    PubMed  CAS  Google Scholar 

  58. Varma M, de Groot CJM, Lanyi S, Taylor RN. Evaluation of plasma insulin-like growth factor- binding protein-3 as a potential predictor of preeclampsia. Am J Obstet Gynecol 1993;169:995–9.

    PubMed  CAS  Google Scholar 

  59. Rutanen EM, Bohn H, Seppala M. Radioimmunoassay of placental protein 12: levels in amniotic fluid, cord blood and serum of healthy adults, pregnant women, and patients with trophoblastic diseases. Am J Obstet Gynecol 1982;144:460–3.

    PubMed  CAS  Google Scholar 

  60. de Groot CJM, O’Brien TJ, Taylor RN. Biochemical evidence of impaired trophoblastic invasion of decidual stroma in women destined to have preeclampsia. Am J Obstet Gynecol 1996;175:24–9.

    Article  PubMed  Google Scholar 

  61. Muttukrishna S, Knight PG, Groome NP, Redman CWG, Ledger WL. Activin A and inhibin A as possible endocrine markers for pre-eclampsia. Lancet 1997;349:1285–8.

    Article  PubMed  CAS  Google Scholar 

  62. Heyborne KD, McGregor JA, Henry G. Interleukin-10 in AF at midtrimester: Immune activation and suppression in relation to fetal growth. Am J Obstet Gynecol 1994;171:55–9.

    PubMed  CAS  Google Scholar 

  63. Spong CY, Sherer DM, Ghindini A, Jenkins CB, Seydel FD, Eglinton GS. Second-trimester amniotic fluid or maternal serum interleukin-10 levels and small for gestational age neonates. Obstet Gynecol 1996;88:24–8.

    Article  PubMed  CAS  Google Scholar 

  64. Rosen AC, Hafner E, Auerbach L, Rosen HR, Schuchter K, Huber K, et al. Placental isoferritin in pregnancies with small for gestation age fetuses. Prenat Diagn 1996;16:641–6.

    Article  PubMed  CAS  Google Scholar 

  65. Schiff E, Peleg E, Goldenberg M, Rosenthal T, Ruppin E, Tamarkin M, et al. The use of aspirin to prevent pregnancy-induced hypertension and lower the ratio of thromboxane A2 to prostacyclin in relatively high-risk pregnancies. N Engl J Med 1989;321:351–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag London Limited

About this chapter

Cite this chapter

Pahal, G.S., Acharya, G., Jauniaux, E. (2000). Biochemical Markers of Fetoplacental Growth Restriction. In: Kingdom, J., Baker, P. (eds) Intrauterine Growth Restriction. Springer, London. https://doi.org/10.1007/978-1-4471-0735-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0735-4_12

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1191-7

  • Online ISBN: 978-1-4471-0735-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics