Skip to main content

Space and Space-Time Modeling using Process Convolutions

  • Conference paper
Quantitative Methods for Current Environmental Issues

Abstract

A continuous spatial model can be constructed by convolving a very simple, perhaps independent, process with a kernel or point spread function. This approach for constructing a spatial process offers a number of advantages over specification through a spatial covariogram. In particular, this process convolution specification leads to computational simplifications and easily extends beyond simple stationary models. This paper uses process convolution models to build space and space-time models that are flexible and able to accommodate large amounts of data. Data from environmental monitoring is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barry, R. P. & Ver Hoef, J. M. (1996). Blackbox kriging: spatial prediction without specifying variogram models. Journal of Agricultural, Biological, and Environmental Statistics, 1, 297–322.

    Article  MathSciNet  Google Scholar 

  • Cleveland, W. S. (1979). Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association, 74, 829 – 836.

    Article  MathSciNet  MATH  Google Scholar 

  • Cressie, N. A. C. (1991). Statistics for Spatial Data. Wiley-Interscience.

    MATH  Google Scholar 

  • Gelfand, A. E. & Ecker, M. D. (1997). Bayesian variogram modeling for an isotropic spatial process. Journal of Agricultural, Biological, and Environmental Statistics, 2, 347 – 369.

    Article  MathSciNet  Google Scholar 

  • Guttorp, P., Meiring, W. & Sampson, P. D. (1994). A space-time analysis of ground-level ozone data. Environmetrics, 5, 241 – 254.

    Article  Google Scholar 

  • Hartvig, N. V. (2001). A stochastic geometry model for fMRI data. Scandinavian Journal of Statistics, to appear.

    Google Scholar 

  • Higdon, D. M. (1998). A process-convolution approach to modeling temperatures in the north Atlantic Ocean. Journal of Environmental and Ecological Statistics, 5, 173 – 190.

    Article  Google Scholar 

  • Higdon, D. M., Swall, J. & Kern, J. C. (1999). Non-stationary spatial modeling. In Bayesian Statistics 6. Proceedings of the Sixth Valencia International Meeting, 761–768. Oxford University Press.

    Google Scholar 

  • Kern, J. C. (2000). Bayesian Process-Convolution Approaches to Specifying Spatial Dependence Structure, unpublished PhD dissertation, Institute of Statistics & Decision Sciences, Duke University, Durham, USA.

    Google Scholar 

  • Ickstadt, K. & Wolpert, R. L. (1999). Spatial regression for marked point processes. In Bayesian Statistics 6. Proceedings of the Sixth Valencia International Meeting, 323 – 341.

    Google Scholar 

  • Littell, R. C., Milliken, G. A., Stroup, W. W. & Wolfinger, R. D. (1996). SAS System for Mixed Models. SAS Institute.

    Google Scholar 

  • Matérn, B. (1986). Spatial Variation (Second Edition). Springer-Verlag.

    Google Scholar 

  • Meiring, W., Guttorp, P. & Sampson, P. D. (1998). Space-time estimation of grid-cell hourly ozone levels for assessment of a deterministic model. Environmental and Ecological Statistics, 5, 197 – 222.

    Article  Google Scholar 

  • Müller, P. (1999). Simulation based optimal design. In Bayesian Statistics 6. Proceedings of the Sixth Valencia International Meeting, 323–341.

    Google Scholar 

  • Nychka, D., Wikle, C. & Royle, J. A. (1999). Large spatial prediction problems and nonstationary random fields. Technical report, National Center for Atmospheric Research.

    Google Scholar 

  • Patterson, H. D. & Thompson, R. (1971). Recovery of inter-block information when block sizes are unequal. Biometrika, 58, 545 – 554.

    Article  MathSciNet  MATH  Google Scholar 

  • Pinheiro, J. & Bates, D. (2000). Mixed Effects models in S and S-plus. New York: Springer.

    Book  MATH  Google Scholar 

  • Sampson, P. D. & Guttorp, P. (1992). Nonparametric estimation of nonstationary spatial covariance structure. Journal of the American Statistical Association, 87, 108 – 119.

    Article  Google Scholar 

  • Stein, M. (1999). Interpolation of Spatial Data: Some Theory for Kriging. New York: Springer-Verlag.

    Book  MATH  Google Scholar 

  • Stroud, J., Müller, P. & Sanso, B. (1999). Dynamic models for spatio-temporal data. Technical Report 99-20, Institute of Statistics and Decision Sciences, Duke University.

    Google Scholar 

  • Thiébaux, H. J. (1997). The power of the duality in spatial-temporal estimation. Journal of Climatology, 10, 567 – 573.

    Article  Google Scholar 

  • Thiébaux, H. J. & Pedder, M. A. (1987). Spatial Objective Analysis: with applications in atmospheric science. San Diego: Academic Press.

    Google Scholar 

  • Ver Hoef, J. & Barry, R. P. (1998). Constructing and fitting models for cokriging and multivariable spatial prediction. Journal of Statistical Planning and Inference, 69, 275–294.

    Article  MathSciNet  MATH  Google Scholar 

  • Ver Hoef, J., Cressie, N. & Barry, R. (2000). Flexible spatial models based on the fast Fourier transform (FFT) for cokriging. Technical report, Department of Statistics, The Ohio State University.

    Google Scholar 

  • von Storch, H. & Zwiers, F. W. (1999). Statistical Analysis in Climate Research. New York: Cambridge University Press.

    Google Scholar 

  • Wackernagel, H. (1995). Multivariate Geostatistics. An Introduction With Applications. Springer-Verlag.

    MATH  Google Scholar 

  • West, M. & Harrison, J. (1997). Bayesian Forecasting and Dynamic Models (Second Edition). New York: Springer-Verlag.

    Google Scholar 

  • Wolpert, R. L. & Ickstadt, K. (1998). Poisson/gamma random field models for spatial statistics. Biometrika, 85, 251 – 267.

    Article  MathSciNet  MATH  Google Scholar 

  • Yaglom, A. M. (1987). Correlation Theory of Stationary and Related Random Functions. Volume I: Basic Results. Springer-Verlag, New York.

    MATH  Google Scholar 

  • Yaglom, A. M. (1987). Correlation Theory of Stationary and Related Random Functions. Volume II: Supplementary Notes and References. Springer- Verlag, New York.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag London Limited

About this paper

Cite this paper

Higdon, D. (2002). Space and Space-Time Modeling using Process Convolutions. In: Anderson, C.W., Barnett, V., Chatwin, P.C., El-Shaarawi, A.H. (eds) Quantitative Methods for Current Environmental Issues. Springer, London. https://doi.org/10.1007/978-1-4471-0657-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0657-9_2

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1171-9

  • Online ISBN: 978-1-4471-0657-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics