Skip to main content
  • 232 Accesses

Abstract

In Chapter 1, Section 1.4, we outlined the various stages involved in engineering product development. We can view the design stage as the following iterative process:

  1. 1.

    Problem Identification. The problem (at an abstract level), resource limitations, target technology, etc., are identified.

  2. 2.

    Specification Generation. Design requirements and performance specifications are listed; constraints and objectives are specified.

  3. 3.

    Concept Generation. The selection or synthesis of preliminary design solutions satisfying a few key constraints is performed; several alternative designs may be generated. This stage may subdivided into: 1) generate functional components, 2) obtain structures for these components, and 3) optimize structural combinations.

  4. 4.

    Analysis. The response of the system to external effects, such as loads in the case of a structure, is determined by using an appropriate model for the system. The primary purpose of this stage is to obtain the responses — preliminary and detailed — needed to check the feasibility of a design.

  5. 5.

    Evaluation. Solutions generated during the Concept Generation stage are evaluated for consistency with respect to the specifications. If several designs are feasible then (normally) an appropriate evaluation function is used to determine the best possible design to refine further. In the evaluation stage the relative optimality of several designs is determined.

  6. 6.

    Detailed Design. Various components of the system are refined so that all applicable constraints or specifications are satisfied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, J. F., “Towards a General Model of Action and Time,” Artificial Intelligence, Vol. 23, Pages 123–154, 1984.

    Article  MATH  Google Scholar 

  2. D’Ambrosio, B., Qualitative Process Theory using Linguistic Variables, Springer Verlag, 1989.

    Google Scholar 

  3. Artobolevsky, I. Mechanisms in Modern Engineering Design, Volumes 1-4, Mir Publishers, Moscow (English translation available).

    Google Scholar 

  4. Cannon Jr., R. H., Dynamics of Physical Systems, McGraw-Hill Publishers, 1967.

    Google Scholar 

  5. Bhaskar, R. and Nigam, A., “Qualitative Physics using Dimensional Analysis,” AI Journal, 1988.

    Google Scholar 

  6. Birkhoff, G., Hydrodynamics. A Study in Logic, Fact and Similitude. Princeton University Press, Princeton, NJ, 1960.

    MATH  Google Scholar 

  7. Bobrow, D. (Editor), Qualitative Reasoning about Physical Systems, MIT Press, Cambridge, 1985.

    Google Scholar 

  8. Cagan, J. and Agogino, A., Innovative Design of Mechanical Structures from First Principles, Technical Report No: 87-0801-5, Berkeley Expert Systems Technology Laboratory, Dept. of Mechanical Engineering, University of California at Berkeley, 1988 (Also appeared in AI EDAM).

    Google Scholar 

  9. Clark, R., Gallo, S. and Hamilton, T., “Qualitative Reasoning: Theory and Applications,” In Proceedings of the 32nd AIAA Aerospace Sciences Meeting, Reno, Nevada, January 10-13, 1994.

    Google Scholar 

  10. de Kleer, J. and Brown, J. S., Qualitative Physics Based on Confluences, Artificial Intelligence, 24: 7–83, 1984.

    Article  Google Scholar 

  11. de Kleer, J. and Brown, J. S., Theories of Causal Ordering, Artificial Intelligence, Vol. 29, pages 33–62, 1986.

    Article  Google Scholar 

  12. Drobot, S., “On the Foundations of Dimensional Analysis,” Studia Math-ematica, 14: 84–89, 1953.

    MathSciNet  MATH  Google Scholar 

  13. Elzas, M. S., Zeigler, B. P., and Tuncer, O. I., Modelling and Simulation Methodology: Knowledge System Paradigms, North Holland Publishing Co., Amsterdam, 1989.

    Google Scholar 

  14. Falkenhainer, B. and Michalski, R., “Integrating Quantitative and Qualitative discovery: The Abacus System,” Machine Learning, Voluml 1, pages 367–401, Kluwer Academic Publishers, 1986.

    Google Scholar 

  15. Falkenhainer, B. and Forbus, K., “Setting Up Large Scale Qualitative Models,” In Proceedings of AAAI-1988, pages 301–306, Morgan Kaufmann Publishers, Inc., 1988.

    Google Scholar 

  16. Faltings, B., “Qualitative Kinematics in Mechanisms,” Artificial Intelligence, Volume 44, Pages 89–119, 1990.

    Article  Google Scholar 

  17. Faltings, B. and Struss, P. (Editors), Recent Advances in Qualitative Reasoning, MIT Press, Cambridge, 1992.

    Google Scholar 

  18. Fault Isolation Procedures for UH-60A and EH-60A Helicopters, TM55-1520-237-T 15 December 1988, Change 5-30 June 1990.

    Google Scholar 

  19. Fishwick, P. A. and Luker, P. A. (Editors), Qualitative Simulation Modeling and Analysis, Springer Verlag, 1990.

    Google Scholar 

  20. Forbus, K. D., “Qualitative Process Theory,” Artificial Intelligence Journal, 24: 85–168, 1984.

    Article  Google Scholar 

  21. Forbus, K. D., “Interpreting Observations of Physical Systems,” IEEE Transactions on Systems, Man and Cybernetics, SMC-17: 350–359, 1987.

    Article  Google Scholar 

  22. Forbus, K. D., Nielsen, P., and Faltings, B., “Qualitative Spatial Reasoning: The CLOCK Project,” Artificial Intelligence, Volume 51, Numbers 1-3, Pages 417–471, Octobter 1991.

    Article  Google Scholar 

  23. Fouché, P. and Kuipers, B., “Reasoning about Energy in Qualitative Simulation,” Technical Report, Dept. of Computer Science, University of Texas Austin, also appeared in IEEE Transactions on Systems, Man, and Cybernetics, Vol. 22, No. 1, pages 47-63, 1992.

    Google Scholar 

  24. Fruchter, R., Law, K. H., and Iwasaki, Y., “An Approach to Qualitative Structural Analysis,” AIEDAM, Vol. 7, No. 3, pages 189–208, 1993.

    Article  Google Scholar 

  25. Gelsey, A., “Automated Reasoning about Machines,” Artificial Intelligence, Volume 74, Pages 1–53, 1995.

    Article  Google Scholar 

  26. Hamilton, T. P., “HELIX: An Application of Qualitative Physics to Diagnostics in Advanced Helicopters,” International Journal for AI in Engineering, Vol. 3, No. 3, pp 141–150, July, 1988.

    Google Scholar 

  27. Hayes, P. J. “The Naive Physics Manifesto,” In Michie, D. (Editor), Expert Systems in the Micro-Electronic Age, Edinburgh University Press, Edinburgh, 1979.

    Google Scholar 

  28. Iwasaki, Y. and Simon, H. A, “Causality in Device Behavior,” Artificial Intelligence, Vol. 29, pages 3–32, 1986.

    Article  Google Scholar 

  29. Iwasaki, Y. and Simon, H. A, “Causal Ordering: Reply to de Kleer and Brown,” Artificial Intelligence, Vol. 29, pages 63–68, 1986.

    Article  Google Scholar 

  30. Iwasaki, Y., Model-Based Reasoning of Device Behavior with Casual Ordering, Ph. D. thesis, Dept. of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 1988.

    Google Scholar 

  31. Iwasaki, Y., “Qualitative Physics,” In A. Baxr, P. R. Cohen, and E. A. Feigenbaum (Editors), The Handbook of Artificial Intelligence, pages 323–413, Addison-Wesley, 1989.

    Google Scholar 

  32. Iwasaki, Y. and Simon, H., “Causality and Model Abstraction,” Artificial Intelligence, Vol., 61, No. 1, 1994.

    Google Scholar 

  33. Joskowicz, L. and Sacks, E., “Computational Kinematics,” Artificial Intelligence, Volume 51, Numbers 1-3, Pages 381–416, October 1991.

    Article  Google Scholar 

  34. Kiriyama, T., Tomiyama, T., Yoshikawa, H., “Qualitative Reasoning in Conceptual Design with Physical Features,” In Faltings, B. and Struss, P. (Editors), Recent Advances in Qualitative Physics, pages 375–386, 1992.

    Google Scholar 

  35. Klir, G., Architecture of Systems Problem Solving, Plenum Press, 1985.

    Google Scholar 

  36. Kokar, M. M., “Determining Functional Formulas Through Changing Representation Base,” In Proceedings of AAAI-86, Fifth National Conference on Artificial Intelligence, pages 455–459. AAAI, 1986.

    Google Scholar 

  37. Kokar, M. M., “Determining Arguments of Invariant Functional Descriptions,” Machine Learning, 1: 403–422, 1986.

    Google Scholar 

  38. Kokar, M. M., “Generating Qualitative Descriptions of Continuous Physical Processes,” In Ras, Z. and Zemankova, M. (Editors), Methodologies for Intelligent Systems, pages 224–231. North-Holland, New York — Amsterdam — London, 1987.

    Google Scholar 

  39. Kokar, M. M., “Critical Hypersurfaces and the Quantity Space,” In Proceedings, AAAI-87, Sixth National Conference on Artificial Intelligence, pages 616–620. AAAI, 1987.

    Google Scholar 

  40. Kokar, M. M., “Accumulating Qualitative Knowledge,” In Proceedings of the Fourth International Symposium on Intelligent Control, pages 574–579. IEEE, 1989.

    Google Scholar 

  41. Kokar, M. M., “An Example of a Consistent Quantitative/Qualitative Representation of a Dynamic System,” In Proceedings of the 1992 IEEE International Symposium on Intelligent Control, 1992.

    Google Scholar 

  42. Kuipers, B. J., “The Limits of Qualitative Simulation,” In Proceedings of the Ninth Joint Conference on Artificial Intelligence, pages 128–136, American Association of Artificial Intelligence (AAAI), Morgan Kaufmann Publishers, Inc., 1985.

    Google Scholar 

  43. Kuipers, B. J., “Qualitative Simulation,” Artificial Intelligence Journal, 29: 289–338, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  44. Kuipers, B. J., “Qualitative Simulation as Casual Explanation,” IEEE Transactions on Systems, Man and Cybernetics, Vol. 17, No. 3., pages 432–444, 1987.

    Article  MathSciNet  Google Scholar 

  45. Kuipers, B. J. and Chiu, C, “Taming Intractable Branching in Qualitative Simulation,” Proceedings of IJCAI-1987, Morgan Kaufmann Publishers, pages 1079–1086, 1987.

    Google Scholar 

  46. Kuipers, B. J. and Berleant, D., “Using Incomplete Quantitative Knowledge in Qualitative Reasoning,” Proceedings of AAAI-88, pages 324–329, Morgan Kaufmann Publishers Inc., 1988.

    Google Scholar 

  47. Kuipers, B. J., Chiu, C, Dalle Molle, D., and Troop, D., “Higher Order Derivative Constraints in Qualitative Simulation,” Artificial Intelligence, Vol. 51, pages 343–379, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  48. Kuipers, B. J., Qualitative Reasoning: Modeling and Simulation with Incomplete Knowledge, Addison Wesley, 1994.

    Google Scholar 

  49. Lancaster, K., “The Scope of Qualitative Economics,” Review of Economic Studies, 29: 99–123, 1962.

    Article  Google Scholar 

  50. Langley, P., “Data Driven Discovery of Physical Laws,” Cognitive Science, 5: 31–54, 1981.

    Article  Google Scholar 

  51. Lee, W. W., Chiu, C, and Kuipers, B. J., Developments Towards Constraining Qualitative Simulation, Technical Report No: AI TR87-44, AI Lab., University of Texas at Austin, 1987.

    Google Scholar 

  52. Mohammed, J. and Simmons, R., “Qualitative Simulation of Semiconductor Fabrication,” In Proceedings NCAI-86, Morgan Kaufmann Publishers, 1986.

    Google Scholar 

  53. Mavrovouniotis, M. L. and Stephanopoulos, G., “Formal Order-of-Magn-itude Reasoning in Process Engineering,” Computers in Chemical Engineering, Vol. 12, pages 867–880, 1988.

    Article  Google Scholar 

  54. Mesarovic, M. D. and Takahara, Y., Abstract Systems Theory, Springer Verlag, 1989.

    Google Scholar 

  55. Monin, S A. and Yaglom, M. A., Statistical Fluid Mechanics: Mechanics of Turbulence, The MIT Press, Cambridge, MA and London, England, 1973.

    Google Scholar 

  56. Mukerjee, A., “Qualitative Geometric Pesign,” Symposium on Solid Modeling Foundations and CAD/CAM Applications, Rossignac, J. and Turner, J. (Editors), ACM Press, 1991.

    Google Scholar 

  57. Mukerjee, A. and Joe, G., “A Qualitative Model of Space,” Technical Report, University of Texas at Austin, 1989, also appeared in Proceedings of NCAI-90, pages 721–727, Morgan Kaufmann Publishers, 1990.

    Google Scholar 

  58. Murthy, S., “Qualitative Reasoning at Multiple Resolutions,” In Proceedings Seventh National Conference on AI, pages 296–300, Morgan Kaufmann Publishers, Inc., 1988.

    Google Scholar 

  59. Murthy, S. and Addanki, S., “PROMPT: An Innovative Design Tool,” In Proceedings of Sixth NCAI, pages 637–642, Morgan-Kaufmann Publishers, Inc., 1987.

    Google Scholar 

  60. Padulo, L. and Arbib, M. A., Systems Theory: A Unified State Space Approach to Continuous and Discrete Systems, W. B. Saunders, Philadelphia, PA, 1974.

    MATH  Google Scholar 

  61. Raiman, O., “Order of Magnitude Reasoning,” Proceedings AAAI-88, pages 100–104, Morgan Kaufmann Publishers Inc., 1984.

    Google Scholar 

  62. Raiman, O., “Order of Magnitude Reasoning,” Artificial Intelligence, Vol. 51, pages 11–38, 1991.

    Article  Google Scholar 

  63. Roddis, K. and Martin, J., “CRACK: Qualitative Reasoning about Fatigue and Fracture,” IEEE Expert, Vol. 7, No. 4, pages 41–48, 1992.

    Article  Google Scholar 

  64. Simon, H. A. “Causal Ordering and Identification,” In Hood, H. and Koopmans (Editors), Studies in Econometric Models, pages 49–74, John Wiley and Sons, 1953.

    Google Scholar 

  65. Simmons, R. Representing and Reasoning about Change in Geologic Interpretation, AI Technical Report 749, Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139.

    Google Scholar 

  66. Subramanian, D. and Wang, C-S., “Kinematic Synthesis with Configuration Spaces”, Research in Engineering Design, Vol. 7, Number 3, pages 193–213, 1995.

    Article  Google Scholar 

  67. Tomiyama, T., Yoshikawa, H., and Kiriyama, T., “Conceptual Design of Mechanisms: A Qualitative Physics Approach,” In Kusiak (Editor), Concurrent Engineering: Automation, Tools, and Techniques, pages 131–152, John Wiley & Sons, 1992.

    Google Scholar 

  68. Trave-Massuyes, T., “Qualitative Analysis: Scope,” In Singh M. (Editor), Systems and Control Encyclopedia: Theory, Technology and Applications, pages 473–481, Pergammon Press, 1987.

    Google Scholar 

  69. Waltz, D. “Understanding Line Drawings of Scenes with Shadows,” In Winston, P. (Editor), The Psychology of Computer Vision, McGraw-Hill, New York, 1975.

    Google Scholar 

  70. Weld, D. “The Use of Aggregation in Qualitative Simulation,” Artificial Intelligence, Vol. 30, pages 1–18, 1986.

    Article  Google Scholar 

  71. Weld, D. and de Kleer, J. (Editors), Qualitative Reasoning about Physical Systems, Morgan Kaufmann Publishers, 1990.

    Google Scholar 

  72. Williams, B., “MINIMA: A Symbolic Approach to Qualitative Algebriac Reasoning,” Proceedings AAAI-88, pages 284–270, Morgan Kaufmann Publishers Inc., 1988.

    Google Scholar 

  73. Zeigler, B. P., “Towards a Formal Theory of Modeling and Simulation: Structure Preserving Morphisms,” Journal of the Association for Computing Machinery, 19(4): 742–764, 1972.

    Article  MathSciNet  MATH  Google Scholar 

  74. Zeigler, B. P., Multi-Facetted Modelling and Discrete Event Simulation, Academic Press, 1984.

    Google Scholar 

  75. Zeigler, B. P., Klir, G., and Oren, T. I., Methodology in Systems Modeling and Simulation, North Holland Publishing Co., 1979.

    Google Scholar 

  76. Zytkow, J., “Combining Many Searches in the Fahrenheit Discovery System,” In Proceedings of the Fourth International Workshop on Machine Learning, pages 281–287, Morgan Kaufmann Publishers, Inc., 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag London

About this chapter

Cite this chapter

Sriram, R.D. (1997). Qualitative Reasoning. In: Intelligent Systems for Engineering. Springer, London. https://doi.org/10.1007/978-1-4471-0631-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0631-9_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-1167-2

  • Online ISBN: 978-1-4471-0631-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics