Skip to main content

An Unsupervised Learning Method that Produces Organized Representations from Real Information

  • Conference paper
Artificial Neural Networks in Medicine and Biology

Part of the book series: Perspectives in Neural Computing ((PERSPECT.NEURAL))

Abstract

The neural-network theories aim at two goals in medicine and biology: modeling of the neural structures and functions, and development of computational methods for the analysis of the experimental data. The Self-Organizing Map (SOM) was originally intended for the explanation of certain brain functions and organizations, but it has later been accepted as a new statistical analysis method to many fields of science and technology. At least 3700 scientific works on the SOM have been published. In its basic form, the SOM forms illustrative nonlinear projections of high-dimensional data manifolds, and these projections, usually produced on a two-dimensional display grid, help in the visualization and understanding of the relationships between complex data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gray RM. IEEE ASSP Mag 1984; 1:4–29

    Article  Google Scholar 

  2. Kohonen T. Self-Organizing Maps. Springer-Verlag, 2nd ed 1997

    Google Scholar 

  3. Kaski S, Kangas J, Kohonen T. Bibliography of Self-Organizing Map (SOM) Papers: 1981-1997. Neural Computing Surveys 1998; 1(3&4):1–176. Available in electronic form at http://www.icsi.berkeley.edu/~jagota/NCS/: vol 1, pp 102-350

    Google Scholar 

  4. Tsao ECK et al. Proc 5th Florida AI Res Symp, 1992

    Google Scholar 

  5. Sardy S, Ibrahim L. Opt Eng 1996; 35:2182–2187

    Article  Google Scholar 

  6. Ahmed MN, Farag AA. Proc ICNN’97

    Google Scholar 

  7. Bertsch H, Dengler J. DAGM-Symp Mustererkennung, 1987

    Google Scholar 

  8. Dhawan AP, Arata L. Proc ICNN’93

    Google Scholar 

  9. Dhawan AP, Arata L. Computer Meth and Programs in Biomed 1993; 40:203–215

    Article  Google Scholar 

  10. Karpouzas I et al. Cybernetica 1995; 38:195–199

    Google Scholar 

  11. Helbing M et al. 4th Int Workshop on Systems, Signals and Image Processing, 1997

    Google Scholar 

  12. Cios KJ et al. Proc Computers in Cardiology, 1990

    Google Scholar 

  13. Gabriel G et al. Proc IJCNN-93

    Google Scholar 

  14. Joo CH, Choi JS. Trans Korean Inst of Electr Eng 1991; 40:374–381

    Google Scholar 

  15. Pan HL, Chen YC. Patt Rec Lett 1992; 13:355–368

    Article  Google Scholar 

  16. Patel D et al. Proc WCNN’94

    Google Scholar 

  17. Vercauteren L et al. Proc INNC’90

    Google Scholar 

  18. Turner M et al. Image and Vision Computing 1993, 11:235–239

    Article  Google Scholar 

  19. Turner M et al. Proc ICANN’94

    Google Scholar 

  20. Turner M et al. Proc British Machine Vision Assoc Conf, 1992

    Google Scholar 

  21. Turner M et al. In: Artificial Neural Networks 2, 1992

    Google Scholar 

  22. Manduca A. Proc ICNN’94

    Google Scholar 

  23. Manduca A. In: Intelligent Engineering Systems Through Artificial Neural Networks, 1994

    Google Scholar 

  24. Manduca A. Proc ICIP-94

    Google Scholar 

  25. Myklebust G et al. Proc Eighth IEEE Symp on Computer-Based Medical Systems, 1995

    Google Scholar 

  26. Oravec M. Proc 3rd Int Conf on Digital Signal Processing, 1997

    Google Scholar 

  27. Berger A et al. Proc 5th Fuzzy Days, 1997

    Google Scholar 

  28. Dorffner G et al. Proc ICANN’93

    Google Scholar 

  29. Elo P al. In: Artificial Neural Networks 2, 1992

    Google Scholar 

  30. Elo P. Technical Report 1-92, Tampere University of Technology, 1992

    Google Scholar 

  31. Flotzinger D et al. Biomed Tech (Berlin) 1992; 37:303–309

    Article  Google Scholar 

  32. Flotzinger D et al. Proc WCNN’93

    Google Scholar 

  33. Flotzinger D. Proc ICANN’93

    Google Scholar 

  34. Jervis BW et al. In: IEE Colloquium on ‘Intelligent Decision Support Systems and Medicine’ (Digest No 143), 1992

    Google Scholar 

  35. Jervis BW et al. IEE Proc Science, Measurement and Technology 1994; 141:432–440

    Article  Google Scholar 

  36. Joutsiniemi SL et al. IEEE Trans Biomed Eng 1995; 42:1062–1068

    Article  Google Scholar 

  37. Kaski S, Joutsiniemi SL. Proc ICANN’93

    Google Scholar 

  38. Morton PE et al. Proc IEEE 17th Annual Northeast Bioengineering Conf, 1991

    Google Scholar 

  39. Peltoranta M. PhD thesis, Graz University of Technology, 1992

    Google Scholar 

  40. Peltoranta M, Pfurtscheller G. Med & Biol Eng & Comput 1994; 32:189–196

    Article  Google Scholar 

  41. Pfurtscheller G et al. Electroencephal and Clin Neurophys 1992; 82:313–315

    Article  Google Scholar 

  42. Pfurtscheller G et al. Electroencephal and Clin Neurophys 1996; 99:416–425

    Article  Google Scholar 

  43. Pradhan N et al. Computers and Biomed Res 1996; 29:303–313

    Article  Google Scholar 

  44. Pregenzer M et al. In: Proc ESANN’95

    Google Scholar 

  45. Roberts S, Tarassenko L. Proc 2nd Int Conf Artificial Neural Networks (IEE), 1991

    Google Scholar 

  46. Roberts S, Tarassenko L. IEE Colloquium on ‘Neurological Signal Processing’ (Digest No. 069), 1992

    Google Scholar 

  47. Roberts S, Tarassenko L. IEE Proc F [Radar and Signal Processing] 1992; 139:420–425

    Article  Google Scholar 

  48. Roberts S, Tarassenko L. Med & Biol Eng & Comput 1992; 30:509–517

    Article  Google Scholar 

  49. Portin K. PhD thesis, Helsinki University of Technology, 1998

    Google Scholar 

  50. Portin K et al. Electroencephal and Clin Neurophys 1996; 98:273–280

    Article  Google Scholar 

  51. Portin K et al. Proc XXVII Ann Conf Finnish Physical Society, 1993

    Google Scholar 

  52. Conde T. Proc ICNN’94

    Google Scholar 

  53. Dokur Z et al. Med Eng & Phys 1997; 19:738–741

    Article  Google Scholar 

  54. Hu YH et al. Proc NNSP’95

    Google Scholar 

  55. Ishikawa S et al. Trans Inst Electr, Inf & Comm Eng 1996; J79D-II:1646–1649

    Google Scholar 

  56. Koski A. Patt Rec Lett 1996; 17:1215–1222

    Article  Google Scholar 

  57. Morabito M et al. Proc Computers in Cardiology, 1991

    Google Scholar 

  58. Presedo J et al. In: Computers in Cardiology, 1996

    Google Scholar 

  59. Reinhardt L et al. Ann of Noninv Electrocardiol 1997; 2:331–337

    Article  Google Scholar 

  60. Abel EW et al. Med Eng & Phys 1996; 18:12–17

    Article  Google Scholar 

  61. Bodruzzaman M et al. Proc WCNN’95

    Google Scholar 

  62. Christodoulou CI, Pattichis CS. Proc 1995 IEEE Int Conf Neural Networks

    Google Scholar 

  63. Graupe D, Liu R. Proc 32nd Midwest Symp on Circuits and Systems, 1990

    Google Scholar 

  64. Pattichis CS et al. IEEE Trans Biomed Eng 1995; 42:486–496

    Article  Google Scholar 

  65. Pattichis CS et al. 1994 IEEE Int Conf on Neural Networks, World Congr on Computational Intelligence, 1994

    Google Scholar 

  66. Schizas CN et al. In: Computer-Based Medical Systems, 1991

    Google Scholar 

  67. Lin S et al. Proc ICANN’95

    Google Scholar 

  68. Lin S et al. Proc SPIE 1996; 2718:540–551

    Article  Google Scholar 

  69. Lin S et al. Neural Computation 1997; 9:607–621

    Article  Google Scholar 

  70. Blanchet M et al. Proc IJCNN-93

    Google Scholar 

  71. Blanchet M et al. Proc 7’th Symp Biological and Physiological Engineering, 1992

    Google Scholar 

  72. Rodriguez MJ et al. Proc Computers in Cardiology, 1993

    Google Scholar 

  73. Rodriguez MJ et al. Proc IWANN’ 93

    Google Scholar 

  74. Rodriquez MJ et al. Proc WCNN’93

    Google Scholar 

  75. Kallio K et al. In: Artificial Neural Networks, 1991

    Google Scholar 

  76. Köhle M et al. Proc CBMS’97

    Google Scholar 

  77. Köhle M, Merkl D. Proc ES ANN’96

    Google Scholar 

  78. Köhle M, Merkl D. Proc ACNN’96

    Google Scholar 

  79. Papadourakis G et al. Math & Comp in Simul 1996; 40:623–635

    Article  Google Scholar 

  80. Schizas CN et al. Proc 1992 Int Biomedical Engineering Days

    Google Scholar 

  81. Taibi G et al. Proc 4th Italian Workshop on Neural Nets, 1992

    Google Scholar 

  82. Pesonen E et al. Int J Bio-Med Comp 1996; 40(3):227–233

    Article  Google Scholar 

  83. Pesonen E et al. Methods Inform Med 1998; 37:59–63

    Google Scholar 

  84. Evans W et al. Proc Int Conf on Neural Networks and Expert Systems in Medicine and Healthcare, 1994

    Google Scholar 

  85. Zaharia CN, Barbu C. 8th European Simulation Symposium, 1996

    Google Scholar 

  86. Liu X, Cheng G, Wu J. Proc ICNN’94

    Google Scholar 

  87. Liu X, Cheng G, Wu JX. Artif Intell in Med 1994; 6:401–415

    Article  Google Scholar 

  88. Leinonen L et al. Scand J Log Phon 1993; 18:159–167

    Article  Google Scholar 

  89. Leinonen L et al. Folia Phoniatrica et Logopaedica 1997; 49:9–20

    Article  Google Scholar 

  90. Leinonen L et al. Suomen Logopedis-Foniatrinen Aikakauslehti 1991; 10(2):4–9

    Google Scholar 

  91. Leinonen L et al. In: Artificial Neural Networks, 1991

    Google Scholar 

  92. Leinonen L et al. J Speech and Hearing Res 1992; 35:287–295

    Google Scholar 

  93. Leinonen L et al. Tekniikka logopediassa ja foniatriassa 1992; (26):41–45

    Google Scholar 

  94. Leinonen L et al. Suomen logopedis-foniatrinen aikakauslehti 1996; 16:89–96

    Google Scholar 

  95. Stevens RH et al. Proc WCNN’95

    Google Scholar 

  96. Gasteiger J, Zupan J. Angewandte Chemie (int ed in English) 1993; 32:503–527

    Article  Google Scholar 

  97. Bienfait B, Gasteiger J. J Molec Graph & Modell 1997; 15:203–215, 254-258

    Article  Google Scholar 

  98. Bienfait B. J Chem Inf & Comp Sci 1994; 34:890–898

    Article  Google Scholar 

  99. Zell A et al. Proc ICNN’94

    Google Scholar 

  100. Andrade MA et al. Biol Cyb 1997; 76:441–450

    Article  MATH  Google Scholar 

  101. Andrare MA et al. Protein Eng 1993; 6:383–390

    Article  Google Scholar 

  102. Ferrán EA et al. Proc First Int Conf on Intelligent Systems for Molecular Biology, 1993

    Google Scholar 

  103. Ferrán EA, Ferrara P. In: Artificial Neural Networks, 1991

    Google Scholar 

  104. Ferrán EA, Ferrara P. Int J Neural Networks 1992; 3:221–226

    Google Scholar 

  105. Ferrán EA et al. In: Artificial Neural Networks 2, 1992

    Google Scholar 

  106. Ferrán EA, Pflugfelder B. Comput Appl Biosci 1993; 9:671–680

    Google Scholar 

  107. Ferrán EA, Ferrara P. Biol Cyb 1991; 65:451–458

    Article  MATH  Google Scholar 

  108. Ferrán EA, Ferrara P. Comput Appl Biosci 1992; 8:39–44

    Google Scholar 

  109. Ferrán EA, Ferrara P. Physica A 1992; 185:395–401

    Article  Google Scholar 

  110. Merelo JJ et al. Proc IWANN’91

    Google Scholar 

  111. Merelo JJ et al. Proc Neuro-Nimes’ 91

    Google Scholar 

  112. Merelo JJ et al. Neurocomputing 1994; 6:443–454

    Article  MATH  Google Scholar 

  113. Giuliano F et al. Comput Applic Biosci 1993; 9:687–693

    Google Scholar 

  114. Goodacre R. Microbiol Europe 1994; 2:16–22

    Google Scholar 

  115. Goodacre R et al. Zentralblatt für Bakteriologie—Int J Medical Microbiology, Virology, and Parasitology and Infectious Diseases 1996; 284:501–515

    Google Scholar 

  116. Goodacre R et al. J Appl Bacteriology 1994; 76:124–134

    Article  Google Scholar 

  117. Goodacre R et al. Chemom Intell Lab Syst 1996; 34:69–83

    Article  Google Scholar 

  118. Menard F, Fogelman-Soulié F. Proc INNC’90

    Google Scholar 

  119. Fernandez JJ, Carazo JM. Ultramicroscopy 1996; 65:81–93

    Article  Google Scholar 

  120. van Osdol WW et al. Proc WCNN’95

    Google Scholar 

  121. Weinstein JN et al. Proc WCNN’95

    Google Scholar 

  122. Vapola M et al. Proc ICANN’94

    Google Scholar 

  123. Vapola M et al. Proc Conf Artificial Intelligence Research in Finland, 1994

    Google Scholar 

  124. Kohonen T. Proc WCNN’94

    Google Scholar 

  125. Kohonen T, Hari R. Trends Neurosci 1999; 22:135–139

    Article  Google Scholar 

  126. Bauer HU et al. Network: Computation in Neural Systems 1997; 8:17–33

    Article  MATH  Google Scholar 

  127. Bauer HU et al. Proc WSOM’97

    Google Scholar 

  128. Bauer HU. Proc ICANN’94

    Google Scholar 

  129. Bauer HU. Neural Computation 1995; 7:36–50

    Article  Google Scholar 

  130. Obermayer K et al. In: Artificial Neural Networks, 1991

    Google Scholar 

  131. Obermayer K et al. IEICE Trans Fund Electr Comm Comp Sci 1992; E75-A:537–545

    Google Scholar 

  132. Obermayer K. Proc Conf Prerational Intelligence, 1993

    Google Scholar 

  133. Obermayer K et al. Phys Rev A [Statist Phys, Plasmas, Fluids & Related Interdisc Topics] 1992; 45:7568–7589

    Google Scholar 

  134. Obermayer K et al. Proc Natl Acad Sci USA 1990; 87:8345–8349

    Article  Google Scholar 

  135. Obermayer K et al. Proc IJCNN-90

    Google Scholar 

  136. Obermayer K et al In: Advances in Neural Information Processing Systems 3, 1991

    Google Scholar 

  137. Obermayer K et al. In: Advances in Neural Information Processing Systems 4, 1992

    Google Scholar 

  138. Obermayer K. Adaptive neuronale Netze und ihre Anwendung als Modelle der Entwicklung kortikaler Karten. Infix Verlag, Sankt Augustin, 1993

    Google Scholar 

  139. Pomierski T et al. Proc ICANN’93

    Google Scholar 

  140. Saarinen J, Kohonen T. Perception 1985; 14:711–719

    Article  Google Scholar 

  141. Luckman AJ, Allinson NM. In: Visual Search, 1992

    Google Scholar 

  142. Kita H, Nishikawa Y. Proc WCNN’93

    Google Scholar 

  143. Martinetz T et al. In: Connectionism in Perspective, 1989

    Google Scholar 

  144. Grönfors T. Proc Conf Artificial Intelligence Research in Finland, 1994

    Google Scholar 

  145. Morasso P, Sanguineti V. Proc ICANN’94

    Google Scholar 

  146. Glaria-Bengoechea A, Burnod Y. In: Artificial Neural Networks, 1991

    Google Scholar 

  147. Saxon JB. Master’s thesis, Texas A&M University, 1991

    Google Scholar 

  148. Luckman AJ, Allinson M. Proc Soc Photo-opt Instr Eng 1990; 1197:98–108

    Google Scholar 

  149. Werkowitz EB. Master’s thesis, Air Force Inst of Tech, 1991

    Google Scholar 

  150. Sutton III GG et al. Neural Computation 1994; 6:1–13

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag London

About this paper

Cite this paper

Kohonen, T. (2000). An Unsupervised Learning Method that Produces Organized Representations from Real Information. In: Malmgren, H., Borga, M., Niklasson, L. (eds) Artificial Neural Networks in Medicine and Biology. Perspectives in Neural Computing. Springer, London. https://doi.org/10.1007/978-1-4471-0513-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-0513-8_6

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-85233-289-1

  • Online ISBN: 978-1-4471-0513-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics