Skip to main content

Perspective and Direction for Future Studies on Lipid Mediators

  • Chapter
  • First Online:
Lipid Mediators and Their Metabolism in the Brain
  • 868 Accesses

Abstract

Neural membranes are composed of phospholipids, sphingolipids, cholesterol, and proteins. The distribution of lipids in two leaflets of lipid bilayer is asymmetric (Ikeda et al., 2006; Yamaji-Hasegawa and Tsujimoto, 2006). Asymmetric distribution of lipids is needed for structural integrity necessary for protein function. Sphingolipids and cholesterol interact with each other via hydrogen bonds, hydrophobic forces, and van der Waal interactions (Simons and Ikonen, 1997).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adibhatla R. M., Hatcher J. F., and Dempsey R. J. (2006). Lipids and lipidomics in brain injury and diseases. AAPS J. 8:E314–E321.

    PubMed  Google Scholar 

  • Albi E., Catald S., Bartoccini E., Magni M.V., Marini F., Mazzoni F. Rainaldi G., Evangelista M., and Garcia-Gil M. (2006). Nuclear sphingomyelin pathway in serum deprivation-induced apoptosis of embryonic hippocampal cells. J. Cellular Physiol. 206:189–195.

    Article  CAS  Google Scholar 

  • Albi E., and Viola Magni M.P. (2007). The role of intranuclear lipids. Biol Cell 96:657–667.

    Article  Google Scholar 

  • Albi E., Lazzarini R., and Viola Magru M. (2008). Phosphatidylcholine/sphingomyelin metabolism crosstalk inside the nucleus. Biochem J. 410:381–389.

    Article  PubMed  CAS  Google Scholar 

  • Bannenberg G., and Serhan C.N. (2010). Specialized pro-resolving lipid mediators in the inflammatory response: An update. Biochim Biophys Acta. 1801:1260–1273.

    PubMed  CAS  Google Scholar 

  • Bazan N. G. (2005a). Lipid signaling in neural plasticity, brain repair, and neuroprotection. Mol. Neurobiol. 32:89–103.

    Article  PubMed  CAS  Google Scholar 

  • Bazan N. G. (2005b). Neuroprotectin D1 (NPD1): A DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress. Brain Pathol. 15:159–166.

    Article  PubMed  CAS  Google Scholar 

  • Bowers-Gentry R. C., Deems R. A., Harkewicz R., and Dennis E. A. (2006). Eicosanoid lipidomics. In: Feng L. and Prestwich G. D. (eds.), Functional Lipidomics. CRC Press-Taylor & Francis Group, Boca Raton, pp. 79–100.

    Google Scholar 

  • Butterfield D. A., Perluigi M., and Sultana R. (2006). Oxidative stress in Alzheimer’s disease brain: New insights from redox proteomics. Eur. J. Pharmacol. 545:39–50.

    Article  PubMed  CAS  Google Scholar 

  • Calder P.C. (2006). Polyunsaturated fatty acids and inflammation. Prostaglandins Leukot Essent Fatty Acids 75:197–202.

    Article  PubMed  CAS  Google Scholar 

  • Facheris M., Beretta S., and Ferrarese C. (2004). Peripheral markers of oxidative stress and excitotoxicity in neurodegenerative disorders: Tools for diagnosis and therapy? J. Alzheimer’s Dis. 6:177–184.

    CAS  Google Scholar 

  • Fahrenkrog B. (2006). The nuclear pore complex, nuclear transport, and apoptosis. Can. J. Physiol. Pharmacol. 84:279–286.

    Article  PubMed  CAS  Google Scholar 

  • Fam S.S., and Morrow J.D. (2003). The isoprostanes: unique products of arachidonic acid oxidation-a review. Curr. Med. Chem. 10: 1723–1740.

    Article  PubMed  CAS  Google Scholar 

  • Fantini J., Garmy N., Mahfoud R., and Yahi N. (2002). Lipid rafts: structure, function and role in HIV, Alzheimer’s and prion diseases. Expert Rev Mol Med. 4:1–22.

    Article  PubMed  Google Scholar 

  • Fantini J., and Yahi N. (2010). Molecular insights into amyloid regulation by membrane cholesterol and sphingolipids: common mechanisms in neurodegenerative diseases. Expert Rev Mol Med. 12:e27.

    Article  PubMed  Google Scholar 

  • Farooqui A. A., Horrocks L. A., and Farooqui T. (2000). Glycerophospholipids in brain: their metabolism, incorporation into membranes, functions, and involvement in neurological disorders. Chem. Phys. Lipids 106:1–29.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (2001). Plasmalogens: workhorse lipids of membranes in normal and injured neurons and glia. Neuroscientist 7:232–245.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A. A. and Horrocks L. A. (2004). Plasmalogens, platelet-activating factor, and other ether lipids. In: Nicolaou A. and Kokotos G. (eds.), Bioactive Lipids. Oily Press, Bridgwater, England, pp. 107–134.

    Google Scholar 

  • Farooqui A.A. and Horrocks L.A. (2006). Phospholipase A2-generated lipid mediators in brain: the good, the bad, and the ugly. Neuroscientist 12:245–260.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui, A.A. and Horrocks, L.A. (2007). Glycerophospholipids in the Brain: Phospholipases A2 in Neurological Disorders, Springer, New York.

    Google Scholar 

  • Farooqui, A.A., Horrocks, L.A., and Farooqui, T. (2007a) Interactions between neural membrane phospholipids and sphingolipids: a recipe for neural cell survival or suicide. J.Neurosci. Res. 85:1834–1850.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui, A.A., Horrocks, L.A., and Farooqui, T. (2007b) Modulation of inflammation inbrain : A matter of fat. J. Neurochem. 101:577–599.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui, A.A., Ong, W.Y., Horrocks, L.A, Chen, P., and Farooqui, T. (2007a) Comparison of biochemical effects of statins and fish oil in brain: the battle of the titans. Brain Res Rev 56: 443–471.

    Article  PubMed  CAS  Google Scholar 

  • Farooqui A.A., Ong W.Y., and Horrocks L.A. (2008). Neurochemical Aspects of Excitotoxicity, Springer, New York.

    Google Scholar 

  • Farooqui A.A. (2009a). Hot Topics in Neural Membrane Lipidology. Springer, New York.

    Google Scholar 

  • Farooqui A.A. (2009b). Beneficial Effects of Fish Oil on Human Brain. Springer, New York.

    Book  Google Scholar 

  • Farooqui A.A., Ong W.Y., Farooqui T. (2010). Lipid mediators in the nucleus: Their potential contribution to Alzheimer’s disease. Biochim Biophys Acta. 1801:906–916.

    PubMed  CAS  Google Scholar 

  • Farooqui A.A. (2010). Neurochemical Aspects of Neurotraumatic and Neurodegenerative Diseases. Springer, New York.

    Book  Google Scholar 

  • Fonteh A.N., Harrington R.J., Huhmer A.F., Biringer R.G., Riggins J.N., and Harrington M.G. (2006). Identification of disease markers in human cerebrospinal fluid using lipidomic and proteomic methods. Dis Markers. 22:39–64.

    PubMed  CAS  Google Scholar 

  • Gehrig K., Lagace T.A., and Ridgway N.D. (2009). Oxysterol activation of phosphatidylcholine synthesis involves CTP:phosphocholine cytidylyltransferase alpha translocation to the nuclear envelope. Biochem. J. 418:209–217.

    Article  PubMed  CAS  Google Scholar 

  • German J. B., Gillies L. A., Smilowitz J. T., Zivkovic A. M., and Watkins S. M. (2007). Lipidomics and lipid profiling in metabolomics. Curr. Opin. Lipidol. 18:66–71.

    PubMed  CAS  Google Scholar 

  • Hannun Y.A., and Obeid L.M. (2008). Principles of bioactive lipid signalling: lessons from sphingolipids. Nat. Rev. Mol. Cell. Biol. 9:139–150.

    Article  PubMed  CAS  Google Scholar 

  • Hogyes E., Nykas C., Kiliaan T., Farkas T., Penke B., and Luiten P.G.M. (2003) Neuroprotective effect of developmental docosahexaenoic acid supplement against excitotoxic brain damage in infant rats. Neuroscience. 119:999–1012.

    Article  PubMed  CAS  Google Scholar 

  • Horrocks L.A. and Farooqui A.A. (2004).Docosahexaenoic acid in the diet: its importance in maintenance and restoration of neural membrane function. Prostaglandins Leukot. Essent. Fatty Acids. 70:361–372.

    Article  PubMed  CAS  Google Scholar 

  • Ikeda M., Kihara A., and Igarashi Y. (2006). Lipid asymmetry of the eukaryotic plasma membrane: Functions and related enzymes. Biol. Pharm. Bull. 29:1542–1546.

    Article  PubMed  CAS  Google Scholar 

  • Ivanova P.T., Milne S.B., Forrester J.S., and Brown H.A. (2004). LIPID arrays: new tools in the understanding of membrane dynamics and lipid signaling. Mol Interv. 4:86–96.

    Article  PubMed  CAS  Google Scholar 

  • Jump D.B. (2004). Fatty acid regulation of gene transcription. Crit. Rev. Clin. Lab. Sci. 41:41–78.

    Article  PubMed  CAS  Google Scholar 

  • Kang J.X., Weylandt K.H. (2008). Modulation of inflammatory cytokines by omega-3 fatty acids. Subcell. Biochem. 49:133–143.

    Article  PubMed  Google Scholar 

  • Kris-Etherton P.M., Taylor D.S., Yu-Poth S., Huth P., Moriarty K., Fishell V., Hargrove R.L., Zhao G., and Etherton T.D. (2000). Polyunsaturated fatty acids in the food chain in the United States. Am J Clin Nutr. 71(1 Suppl):179S–188S.

    Google Scholar 

  • Lagace T.A., Byers D.M., Cook H.W., and Ridgway N.D. (1995). Chinese hamster ovary cells overexpressing the oxysterol binding protein (OSBP) display enhanced synthesis of sphingomyelin in response to 25-hydroxycholesterol. J. lipid Res. 40:109–116.

    Google Scholar 

  • Lang P. A., Kempe D. S., Tanneur V., Eisele K., Klarl B. A., Myssina S., Jendrossek V., Ishii S., Shimizu T., Waidmann M., Hessler G., Huber S. M., Lang F., and Wieder T. (2005). Stimulation of erythrocyte ceramide formation by platelet-activating factor. J. Cell Sci. 118:1233–1243.

    Article  PubMed  CAS  Google Scholar 

  • Latorre E., Collado M. P., Fernández I., Aragonés M. D., and Catalán R. E. (2003). Signaling events mediating activation of brain ethanolamine plasmalogen hydrolysis by ceramide. Eur. J. Biochem. 270:36–46.

    Article  PubMed  CAS  Google Scholar 

  • Ledeen R.W., and Wu G. (2008). Nuclear sphingolipids: metabolism and signaling. J Lipid Res. 49:1176–1186.

    Article  PubMed  CAS  Google Scholar 

  • Lu Y., Hong S., Gotlinger K., and Serhan C. N. (2006). Lipid mediator informatics and proteomics in inflammation-resolution. Thescientificworldjournal 6:589–614.

    Article  PubMed  CAS  Google Scholar 

  • Lucero H. A. and Robbins P. W. (2004). Lipid rafts-protein association and the regulation of protein activity. Arch. Biochem. Biophys. 426:208–224.

    Article  PubMed  CAS  Google Scholar 

  • Malaplate-Armand C, Florent-Béchard S, Youssef I, Koziel V, Sponne I, Kriem B, Leininger-Muller B, Olivier JL, Oster T, Pillot T. (2006). Soluble oligomers of amyloid-beta peptide induce neuronal apoptosis by activating a cPLA2-dependent sphingomyelinase-ceramide pathway. Neurobiol Dis. 23:178–189.

    Article  PubMed  CAS  Google Scholar 

  • Martelli A.M., FolloM.Y., Evangelisti C., Fala F., Flume R., Billi A.M. (2005). Nuclear inositol lipid metabolism: more than just second messenger generation? J. Cell Biochem. 96 :285–292.

    Article  PubMed  CAS  Google Scholar 

  • Maurer M.H. (2010). Proteomics of brain extracellular fluid (ECF) and cerebrospinal fluid (CSF). Mass Spectrom. Rev. 29:17–28.

    PubMed  Google Scholar 

  • Milne S., Ivanova P., Forrester J., and Brown H. A. (2006). Lipidomics: An analysis of cellular lipids by ESI-MS. Methods 39:92-103.

    Article  PubMed  CAS  Google Scholar 

  • Montuschi P., Barnes P., and Roberts L.J. 2nd (2007). Insights into oxidative stress: the isoprostanes. Curr Med Chem. 14:703–717.

    Article  PubMed  CAS  Google Scholar 

  • Naim B., Brumfeld V., Kapon R., Kiss V., Nevo R., and Reich Z (2007). Passive and facilitated transport in nuclear pore complexes is largely uncoupled. J. Biol. Chem. 282:3881–3888.

    Article  PubMed  CAS  Google Scholar 

  • Nodai A., Machida T., Izumi S., Hamaya Y., Kohno T., Igarashi Y., Iizuka K., Minami M., and Hirafuji M. (2007). Sphingosine 1-phosphate induces cyclooxygeriase-2 via Ca2+-dependent, but MAPK-independent mechanism in rat vascular smooth muscle cells. Life Sci. 80:1768–1776.

    Article  PubMed  CAS  Google Scholar 

  • Olkkonen V.M., and Hynynen R. (2009). Interactions of oxysterols with membranes and proteins. Mol. Aspects Med (In press).

    Google Scholar 

  • Park E.J., Suh M., Thomson A.B.R., Ramanujam K.S., and Clandinin M.T. (2006). Dietary gangliosides increase the content and molecular percentage of ether phospholipids containing 20:4n-6 and 22:6n-3 in weanling rat intestine. J Nutr Biochem. 17:337–344.

    Article  PubMed  CAS  Google Scholar 

  • Palsdottir H. and Hunte C. (2004). Lipids in membrane protein structures. Biochim. Biophys. Acta Biomembr. 1666:2–18.

    Article  CAS  Google Scholar 

  • Perluigi M., Poon H. F., Hensley K., Pierce W. M., Klein J. B., Calabrese V., De Marco C., and Butterfield D. A. (2005). Proteomic analysis of 4-hydroxy-2-nonenal-modified proteins in G93A-SOD1 transgenic mice - A model of familial amyotrophic lateral sclerosis. Free Radical Biol. Med. 38:960–968.

    Article  CAS  Google Scholar 

  • Pettus B. J., Chalfant C. E., and Hannun Y. A. (2004). Sphingolipids in inflammation: Roles and implications. Curr. Mol. Med. 4:405–418.

    Article  PubMed  CAS  Google Scholar 

  • Phillis J.W., Horrocks L.A., and Farooqui A.A. (2006). Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: their role and involvement in neurological disorders. Brain Res. Rev. 52:201–243.

    Article  PubMed  CAS  Google Scholar 

  • Pyne S. (2004). Lysolipids: Sphingosine 1-phosphate and lysophosphatidic acid. In: Nicolaou A. and Kokotos G. (eds.), Bioactive Lipids. The Oily Press, Bridgwater, England, pp. 85–106.

    Google Scholar 

  • Ridgway N.D. (1995). 25-Hydroxycholesterol stimulates sphingomyelin synthesis in Chinese hamster ovary cells. J. Lipid Res. 36:1345–1358.

    PubMed  CAS  Google Scholar 

  • Robinson B. S., Hii C. S. T., Poulos A., and Ferrante A. (1997). Activation of neutral sphingomyelinase in human neutrophils by polyunsaturated fatty acids. Immunology 91:274–280.

    Article  PubMed  CAS  Google Scholar 

  • Serhan C. N. (2005a). Mediator lipidomics. Prostaglandins Other Lipid Mediat. 77:4–14.

    Article  CAS  Google Scholar 

  • Serhan C. N. (2005b). Novel eicosanoid and docosanoid mediators: resolvins, docosatrienes, and neuroprotectins. Curr. Opin. Clin. Nutr. Metab. Care 8:115–121.

    Article  PubMed  CAS  Google Scholar 

  • Serhan C. N. (2005c). Novel ω-3-derived local mediators in anti-inflammation and resolution. Pharmacol. Ther. 105:7–21.

    Article  PubMed  CAS  Google Scholar 

  • Serhan C. N., Hong S., and Lu Y. (2006). Lipid mediator informatics-lipidomics: Novel pathways in mapping resolution. AAPS J. 8:E284–E297.

    PubMed  Google Scholar 

  • Simons K. and Ikonen E. (1997) Functional rafts in cell membranes. Nature 387:569–572.

    Article  PubMed  CAS  Google Scholar 

  • Simopoulos A. P. (2000). Commentary on the workshop statement. Essentiality of and recommended dietary intakes for Omega-6 and Omega-3 fatty acids. Prostaglandins Leukot Essent Fatty Acids. 63:123–124.

    Google Scholar 

  • Simopoulos, A.P. (2002). Omega-3 fatty acids in inflammation and autoimmune diseases. J. Am. Coll. Nutr. 21:495–505.

    PubMed  CAS  Google Scholar 

  • Simopoulos A. P. (2006) Evolutionary aspects of diet, the omega-6/omega-3 ratio and genetic variation: nutritional implications for chronic diseases. Biomed. Pharmacother. 60:502–507.

    Article  PubMed  CAS  Google Scholar 

  • Simopoulos AP. (2008). The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med (Maywood). 233:674–688.

    Article  CAS  Google Scholar 

  • Tillman T. S. and Cascio M. (2003). Effects of membrane lipids on ion channel structure and function. Cell Biochem. Biophys. 38:161–190.

    Article  PubMed  CAS  Google Scholar 

  • Vanags D.M., Larsson P., Filtenmark S., Jakobsson P.J., Orrenius S., Claesson H.E., and Aguilar-Santelises M. (1997). Inhibitors of arachidonic acid metabolism reduce DNA and nuclear fragmentation induced by TNF plus cycloheximide in U937 cells. Cell Death Differ. 4:479–86.

    Article  PubMed  CAS  Google Scholar 

  • Weylandt K. H., Kang J. X. (2005). Rethinking lipid mediators. Lancet 366:618–620.

    Article  PubMed  Google Scholar 

  • Wymann M.P., and Schneiter R. (2008). Lipid signalling in disease. Nat. Rev. Mol. Cell. Biol. 9:162–176.

    Article  PubMed  CAS  Google Scholar 

  • Yahi N., Aulas A., and Fantini J. (2010). How cholesterol constrains glycolipid conformation for optimal recognition of Alzheimer’s beta amyloid peptide (Abeta1-40). PLoS One. 5:e9079.

    Article  PubMed  Google Scholar 

  • Yamaji-Hasegawa A. and Tsujimoto M. (2006). Asymmetric distribution of phospholipids in biomembranes. Biol. Pharm. Bull. 29:1547–1553.

    Article  PubMed  CAS  Google Scholar 

  • Yoshikawa K., Kita Y., Kishimoto K., and Shimizu T. (2006). Profiling of eicosanoid production in the rat hippocampus during kainic acid-induced seizure - Dual phase regulation and differential involvement of COX-1 and COX-2. J. Biol. Chem. 281:14663–14669.

    Article  PubMed  CAS  Google Scholar 

  • Zajchowski L. D. and Robbins S. M. (2002). Lipid rafts and little caves - Compartmentalized signalling in membrane microdomains. Eur. J. Biochem. 269:737–752.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhlaq A. Farooqui .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Farooqui, A.A. (2011). Perspective and Direction for Future Studies on Lipid Mediators. In: Lipid Mediators and Their Metabolism in the Brain. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9940-5_11

Download citation

Publish with us

Policies and ethics