Skip to main content

Low Dimensionality and Epitaxial Stabilization in Metal-Supported Oxide Nanostructures: Mnx Oy on Pd(100) Mnx Oy

  • Chapter
  • First Online:
Functional Metal Oxide Nanostructures

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 149))

  • 2721 Accesses

Abstract

This chapter presents a survey of the growth and structure of manganese oxide nanolayers on a Pd(100) substrate, investigated in two different thickness regimes through a plethora of surface science techniques (scanning tunneling microscopy, atomic force microscopy (AFM), low energy electron diffraction (LEED), SPA-LEED, X-ray photoemission spectroscopy, X-ray absorption spectroscopy (XAS), and high-resolution electron energy loss spectroscopy) and state-of-the-art theoretical tools based on density functional theory and hybrid functionals. The electronic and structural properties of the films are analyzed as a function of film thickness and growth conditions. Epitaxial (geometric) relationships that favor the growth of the different oxide phases are investigated, with special attention to the stability of the Mn3O4 (001)/MnO(001) interface and the phase stability diagram of Mn x O y /Pd(100) phases at a Mn coverage of about one monolayer. A rich variety of two-dimensional (2D) nanophases, which are novel in terms of their structural and electronic properties, have been identified, which could play an important role in mediating the epitaxial growth of MnO thicker films on Pd(100). Furthermore, the formation of O or Mn vacancies drives the transition between 2D phases with similar structural units but different lattice periodicity, indicating that ion vacancies, mixed valence states, and substoichiometry lie on the basis of the architectural flexibility in the monolayer regime. Interestingly, the latter concepts play a major role in the more complex class of functional oxides such as the manganites, of which binary manganese oxides are the simplest parent compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anisimov, V.I. (ed.): Strong Coulomb Correlation in Electronic Structure Calculations: Beyond the Local Density Approximation. Gordon and Breach Science Publishers, The Netherlands (2000)

    Google Scholar 

  2. Agnoli, S., Sambi, M., Granozzi, G., Schoiswohl, J., Surnev, S., Netzer, F.P., Ferrero, M., Ferrari, A.M., Pisani, C.: Experimental and theoretical study of a surface stabilized monolayer phase of nickel oxide on Pd(100). J. Phys. Chem. B 109, 17197 (2004)

    Article  Google Scholar 

  3. Allegretti, F., Franchini, C., Bayer, V., Leitner, M., Parteder, G., Xu, B., Fleming, B., Ramsey, M.G., Podloucky, R., Surnev, S., Netzer, F.P.: Epitaxial stabilization of MnO(111) overlayers on a Pd(100) surface. Phys. Rev. B 75, 224120 (2007)

    Article  Google Scholar 

  4. Allegretti, F., Leitner, M., Parteder, G., Xu, B., Fleming, B., Ramsey, M.G., Surnev, S., Netzer, F.P.: The (100) → (111) Transition in Epitaxial Manganese Oxide Nanolayers. In: Cat, D.T., Pucci, A., Wandelt, K. (eds.) Physics and Engineering of New Materials, pp. 163–170. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Allegretti, F., Parteder, G., Gragnaniello, L., Surnev, S., Netzer, F.P., Barolo, A., Agnoli, S., Granozzi, G., Franchini, C., Podloucky, R.: Strained c(4 × 2) CoO(100)-like monolayer on Pd(100): experiment and theory. Surf. Sci. 604, 529 (2010)

    Article  CAS  Google Scholar 

  6. Arita, R., Tanida, Y., Entani, S., Kiguchi, M., Saiki, K., Aoki, H.: Polar surface engineering in ultrathin MgO(111)/Ag(111): Possibility of a metal-insulator transition and magnetism. Phys. Rev. B 69, 235423 (2004)

    Article  Google Scholar 

  7. Armstrong, A.R., Bruce, P.G.: Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature 381, 499 (1996)

    Article  CAS  Google Scholar 

  8. Bachmann, K.J.: The Materials Science of Microelectronics. Wiley-VCH, New York (1994)

    Google Scholar 

  9. Baldi, M., Finocchio, E., Milella, F., Busca, G.: Catalytic combustion of C3 hydrocarbons and oxygenates over Mn3O4. Appl. Catal. B: Environ 16, 43 (1998)

    Article  CAS  Google Scholar 

  10. Barbier, A., Mocuta, C., Kuhlenbeck, H., Peters, K.F., Richter, B., Renaud, G.: Atomic structure of the polar NiO(111)- p(2 × 2) surface. Phys. Rev. Lett. 84, 2897 (2000)

    Article  CAS  Google Scholar 

  11. Barbier, A., Mocuta, C., Renaud, G.: Structure, transformation, and reduction of the polar NiO(111) surface. Phys. Rev. B 62, 16056 (2000)

    Article  CAS  Google Scholar 

  12. Barbier, A., Mocuta, C., Neubeck, W., Mulazzi, M., Yakhou, F., Chesne, K., Sollier, A., Vettier, C., de Bergevin, F.: Surface and bulk spin ordering of antiferromagnetic materials: NiO(111). Phys. Rev. Lett. 93, 257208 (2004)

    Article  Google Scholar 

  13. Barbier, A., Stierle, A., Finocchi, F., Jupille, J.: Stability and stoichiometry of (polar) oxide surfaces for varying oxygen chemical potential. J. Phys.: Condens. Matter 20, 184014 (2008)

    Article  Google Scholar 

  14. Bayer, V., Franchini, C., Podloucky, R.: Ab-initio study of the structural, electronic, and magnetic properties of MnO(100) and MnO(110). Phys. Rev. B 75, 035404 (2007)

    Article  Google Scholar 

  15. Bayer, V., Podloucky, R., Franchini, C., Allegretti, F., Xu, B., Parteder, G., Ramsey, M.G., Surnev, S., Netzer, F.P.: Formation of Mn3O4(001) on MnO(001): surface and interface structural stability. Phys. Rev. B 76, 165428 (2007)

    Article  Google Scholar 

  16. Buciuman, F., Patcas, F., Craciun, R., Zahn, D.R.T.: Vibrational spectroscopy of bulk and supported manganese oxides. Phys. Chem. Chem. Phys. 1, 185 (1999)

    Article  CAS  Google Scholar 

  17. Caslavska, V., Roy, R.: Epitaxial growth of Mn3O4 single-crystal films. J. Appl. Phys. 41, 825 (1970)

    Article  CAS  Google Scholar 

  18. Chassé, A., Langheinrich, Ch, Müller, F., Hüfner, S.: Growth and structure of thin MnO films on Ag(001) in dependence on film thickness. Surf. Sci. 602, 597 (2008)

    Article  Google Scholar 

  19. Chung, E.M.L., Paul, D.M., Balakrischnan, G., Lees, M.R., Ivanov, A., Yethiray, M.: Role of electronic correlations on the phonon modes of MnO and NiO. Phys. Rev. B 68, 140406(R) (2003)

    Google Scholar 

  20. de Rudder, J., Van de Wiele, T., Dhooge, W., Comhaire, F., Verstraete, W.: Advanced water treatment with manganese oxide for the removal of 17α-ethynylestradiol (EE2). Water Res. 38, 184 (2004)

    Article  Google Scholar 

  21. Ertl, G., Knötzinger, H., Schüth, F., Weitkamp, J. (eds.): Handbook of Heterogeneous Catalysis, vol. 1–8, 2nd edn. Wiley-VCH, Weinheim (2008)

    Google Scholar 

  22. Franchini, C., Bayer, V., Podloucky, R., Paier, J., Kresse, G.: Density functional theory study of MnO by an hybrid functional approach. Phys. Rev. B 72, 045132 (2005)

    Article  Google Scholar 

  23. Franchini, C., Bayer, V., Podloucky, R., Parteder, G., Surnev, S., Netzer, F.P.: Density functional study of the polar MnO(111) surface. Phys. Rev. B 73, 155402 (2006)

    Article  Google Scholar 

  24. Franchini, C., Podloucky, R., Paier, J., Marsman, M., Kresse, G.: Ground-state properties of multivalent manganese oxides: Density functional and hybrid density functional calculations. Phys. Rev. B 75, 195128 (2007)

    Article  Google Scholar 

  25. Franchini, C., Podloucky, R., Allegretti, F., Li, F., Parteder, G., Surnev, S., Netzer, F.P.: Structural and vibrational properties of two-dimensional MnxOy layers on Pd(100): Experiments and density functional theory calculations. Phys. Rev. B 79, 035420 (2009)

    Article  Google Scholar 

  26. Franchini, C., Zabloudil, J., Podloucky, R., Allegretti, F., Li, F., Surnev, S., Netzer, F.P.: Interplay between magnetic, electronic and vibrational effects in monolayer Mn3O4 grown on Pd(100). J. Chem. Phys. 130, 124707 (2009)

    Article  CAS  Google Scholar 

  27. Franke, P., Neuschütz, D. (ed.): Springer Materials – The Landolt-Börnstein Database, vol. IV/19B4. doi: 10.1007/10757285_37

  28. Gilbert, B., Frazer, B.H., Belz, A., Conrad, P.G., Nealson, K.H., Haskel, D., Lang, J.C., Srajer, G., De Stasio, G.: Multiple scattering calculations of bonding and X-ray absorption spectroscopy of manganese oxides. J. Phys. Chem. A 107, 2839 (2003)

    Article  CAS  Google Scholar 

  29. Giordano, L., Pacchioni, G., Goniakowski, J., Nilius, N., Rienks, E.D.L., Freund, H.-J.: Interplay between structural, magnetic, and electronic properties in a FeO/Pt(111) ultrathin film. Phys. Rev. B 76, 075416 (2007)

    Article  Google Scholar 

  30. Goniakowski, J., Noguera, C.: Microscopic mechanisms of stabilization of polar oxide surfaces: Transition metals on the MgO(111) surface. Phys. Rev. B 66, 085417 (2002)

    Article  Google Scholar 

  31. Goniakowski, J., Noguera, C., Giordano, L.: Using polarity for engineering oxide nanostructures: Structural phase diagram in free and supported MgO(111) ultrathin films. Phys. Rev. Lett. 93, 215702 (2004)

    Article  Google Scholar 

  32. Goniakowski, J., Finocchi, F., Noguera, C.: Polarity of oxide surfaces and nanostructures. Rep. Prog. Phys. 71, 016501 (2008)

    Article  Google Scholar 

  33. Graf, M., Gurlo, A., Bârsan, N., Weimar, U., Hierlemann, A.: Microfabricated gas sensor systems with sensitive nanocrystalline metal-oxide films. J. Nanoparticle Res. 8, 823 (2006)

    Article  CAS  Google Scholar 

  34. Guo, L.W., Ko, H.J., Makino, H., Chen, Y.F., Inaba, K., Yao, T.: Epitaxial growth of Mn3O4 film on MgO(001) substrate by plasma-assisted molecular beam epitaxy (MBE). J. Cryst. Growth 205, 531 (1999)

    Article  CAS  Google Scholar 

  35. Guo, L.W., Peng, D.L., Makino, H., Inaba, K., Ko, H.J., Sumiyama, K., Yao, T.: Structural and magnetic properties of Mn3O4 films grown on MgO(001) substrates by plasma-assisted MBE. J. Magn. Magn. Mater. 213, 321 (1999)

    Article  Google Scholar 

  36. Haywood, B.C.G., Collins, M.F.: Optical phonons in MnO. J. Phys. C Solid State Phys. 4, 1299 (1971)

    Article  CAS  Google Scholar 

  37. Hagendorf, Ch, Sachert, S., Bochmann, B., Kostov, K., Widdra, W.: Growth, atomic structure, and vibrational properties of MnO ultrathin films on Pt(111). Phys. Rev. B 77, 075406 (2008)

    Article  Google Scholar 

  38. Henrich, V.E., Cox, P.A.: The Surface Science of Metal Oxides. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  39. Heyd, J., Scuseria, G.E., Ernzerhof, M.: Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207 (2003)

    Article  CAS  Google Scholar 

  40. Imada, M., Fujimori, A., Tokura, Y.: Metal-insulator transitions. Rev. Mod. Phys. 70, 1039 (1998)

    Article  CAS  Google Scholar 

  41. Jones, D.A.: Principles and Prevention of Corrosion, 2nd edn. Prentice Hall, Upper Saddle River, NJ (1996)

    Google Scholar 

  42. Julien, C.M., Massot, M., Poinsignon, C.: Lattice vibrations of manganese oxides: Part I. Periodic structures. Spectrochim. Acta A 60, 689 (2004)

    Article  CAS  Google Scholar 

  43. Kiguchi, M., Entani, S., Saiki, K., Goto, T., Koma, A.: Atomic and electronic structure of an unreconstructed polar MgO(111) thin film on Ag(111). Phys. Rev. 68, 115402 (2003)

    Article  Google Scholar 

  44. Kohn, W.: Nobel lecture: Electronic structure of matter-wave functions and density functionals. Rev. Mod. Phys. 71, 1253 (1999)

    Article  CAS  Google Scholar 

  45. Kresse, G., Furthmüller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996)

    Article  CAS  Google Scholar 

  46. Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999)

    Article  CAS  Google Scholar 

  47. Kurata, H., Colliex, C.: Electron-energy-loss core-edge structures in manganese oxides. Phys. Rev. 48, 2102 (1993)

    CAS  Google Scholar 

  48. Langell, M.A., Hutchings, C.W., Carson, G.A., Nassir, M.H.: High resolution electron energy loss spectroscopy of MnO(100) and oxidized MnO(100). J. Vac. Sci. Techol. A 14, 1656 (1996)

    Article  CAS  Google Scholar 

  49. Lee, G.H., Huh, S.H., Jeong, J.W., Choi, B.J., Kim, S.H., Ri, H.-C.: Anomalous magnetic properties of MnO nanoclusters. J. Am. Chem. Soc. 124, 12094 (2002)

    Article  CAS  Google Scholar 

  50. Li, F., Parteder, G., Allegretti, F., Franchini, C., Podloucky, R., Surnev, S., Netzer, F.P.: Two-dimensional manganese oxide nanolayers on Pd(100): Surface phase diagram. J. Phys.: Condens. Matter 21, 134008 (2009)

    Article  CAS  Google Scholar 

  51. Meyer, W., Hock, D., Biedermann, K., Gubo, M., Müller, S., Hammer, L., Heinz, K.: Coexistence of rocksalt and wurtzite structure in nanosized CoO films. Phys. Rev. Lett. 101, 016103 (2008)

    Article  CAS  Google Scholar 

  52. Meyer, W., Biedermann, K., Gubo, M., Hammer, L., Heinz, K.: Superstructure in the termination of CoO(111) surfaces: Low-energy electron diffraction and scanning tunneling microscopy. Phys. Rev. B 79, 121403(R) (2009)

    Article  Google Scholar 

  53. Mocuta, C., Barbier, A., Renaud, G., Samson, Y., Noblet, M.: Structural characterization of NiO films on Al2O3(0001). J. Magn. Magn. Mater. 211, 283 (2000)

    Article  CAS  Google Scholar 

  54. Müller, F., de Masi, R., Reinicke, D., Steiner, P., Hüfner, S., Stöwe, K.: Epitaxial growth of MnO/Ag(001) films. Surf. Sci. 520, 158 (2002)

    Article  Google Scholar 

  55. Na, C.W., Han, D.S., Kim, D.S., Park, J., Jeon, Y.T., Lee, G., Jung, M.-H.: Ferromagnetism of MnO and Mn3O4 nanowires. Appl. Phys. Lett. 87, 142504 (2005)

    Article  Google Scholar 

  56. Nagel, M., Biswas, I., Peisert, H., Chassé, T.: Interface properties and electronic structure of ultrathin manganese oxide films on Ag(0 0 1). Surf. Sci. 601, 4484 (2007)

    Article  CAS  Google Scholar 

  57. Nagel, M., Biswas, I., Nagel, P., Pellegrin, E., Schuppler, S., Peisert, H., Chassé, T.: Ultrathin transition-metal oxide films: Thickness dependence of the electronic structure and local geometry in MnO. Phys. Rev. B 75, 195426 (2007)

    Article  Google Scholar 

  58. Nayak, S.K., Jena, P.: Giant magnetic moments and magnetic bistability of stoichiometric MnO clusters. Phys. Rev. Lett. 81, 2970 (1998)

    Article  CAS  Google Scholar 

  59. Netzer, F.P., Allegretti, F., Surnev, S.: Low-dimensional oxide nanostructures on metals: hybrid systems with novel properties. J. Vac. Sci. Technol. B 28, 1 (2010)

    Article  CAS  Google Scholar 

  60. Nishimura, H., Tashiro, T., Fujitani, T., Nakamura, J.: Surface structure of MnO/Rh(100) studied by scanning tunneling microscopy and low-energy electron diffraction. J. Vac. Sci. Technol. A 18, 1460 (2000)

    Article  CAS  Google Scholar 

  61. Noguera, C.: Polar oxide surfaces. J. Phys.: Condens. Matter 12, 367 (2000)

    Article  Google Scholar 

  62. Ogale, S.B. (ed.): Thin Films and Heterostructures for Oxide Electronics. Springer, Boston (2005)

    Google Scholar 

  63. Post, J.E.: Manganese oxide minerals: Crystal structures and economic and environmental significance. Proc. Natl Acad. Sci. USA 96, 3447 (1999)

    Article  CAS  Google Scholar 

  64. Ranke, W., Ritter, M., Weiss, W.: Crystal structures and growth mechanism for ultrathin films of ionic compound materials: FeO(111) on Pt(111). Phys. Rev. B 60, 1527 (1999)

    Article  CAS  Google Scholar 

  65. Rao, C.N.R., Raveau, B. (eds.): Colossal Magnetoresistance. Charge Ordering and Related Properties of Manganese Oxides. World Scientific, Singapore (1998)

    Google Scholar 

  66. Renaud, G., Barbier, A.: The Chemical Physics of Solid surfaces, vol. 9, p. 256. Elsevier, New York (2001)

    Google Scholar 

  67. Rienks, E.D.L., Nilius, N., Rust, H.-P., Freund, H.-J.: Surface potential of a polar oxide film: FeO on Pt(111). Phys. Rev. B 71, 2414048 (2005)

    Article  Google Scholar 

  68. Rizzi, G.A., Zanoni, R., Di Siro, S., Perriello, L., Granozzi, G.: Epitaxial growth of MnO nanoparticles on Pt(111) by reactive deposition of Mn2 (CO)1O. Surf. Sci. 462, 187 (2000)

    Article  CAS  Google Scholar 

  69. Rizzi, G.A., Petukhov, M., Sambi, M., Zanoni, R., Perriello, L., Granozzi, G.: An X-ray photoelectron diffraction structural characterization of an epitaxial MnO ultrathin film on Pt(111). Surf. Sci. 482–485, 1474 (2001)

    Article  Google Scholar 

  70. Sahner, K., Tuller, H.L.: Novel deposition techniques for metal oxides: Prospect for gas sensing. J. Electroceram. (2008). doi:10.1007/s10832-008-9554-7

  71. Samant, P.V., Fernandes, J.B.: Nickel-modified manganese oxide as an active electrocatalyst for oxidation of methanol in fuel cells. J. Power Sources 79, 114 (1999)

    Article  CAS  Google Scholar 

  72. Si, P.Z., Li, D., Lee, J.W., Choi, C.J., Zhang, Z.D., Geng, D.Y., Brück, E.: Unconventional exchange bias in oxide-coated manganese nanoparticles. Appl. Phys. Lett. 87, 133122 (2005)

    Article  Google Scholar 

  73. Soares, E.A., Paniago, R., de Carvalho, V.E., Lopes, E.L., Abreu, G.J.P., Pfannes, H.-D.: Quantitative low-energy electron diffraction analysis of MnO(100) films grown on Ag(100). Phys. Rev. B 73, 035419 (2005)

    Article  Google Scholar 

  74. Tourney, J., Dowding, C., Worrall, F., McCann, C., Gray, N., Davenport, R., Johnson, K.: Mn oxide as a contaminated-land remediation product. Mineral. Mag. 72, 513 (2008)

    Article  CAS  Google Scholar 

  75. von Helmolt, R., Wecker, J., Holzapfel, B., Schultz, L., Samwer, K.: Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOx ferromagnetic films. Phys. Rev. Lett. 71, 2331 (1993)

    Article  Google Scholar 

  76. Yang, J., Xu, J.J.: Nanoporous amorphous manganese oxide as electrocatalyst for oxygen reduction in alkaline solutions. Electrochem. Commun. 5, 306 (2003)

    Article  CAS  Google Scholar 

  77. Zhang, W.-B., Tang, B.-W.: Stability of the polar NiO(111) surface. J. Chem. Phys. 128, 124703 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

We are very grateful to all coworkers mentioned in the references, in particular to F. Netzer, S. Surnev, R. Podloucky, and G. Kresse for their scientific vision, unfailing inspiration, and enthusiastic support, and to F. Li, G. Parteder and V. Bayer for their invaluable assistance during different stages of this work. Financial support by the Austrian Science Funds FWF, by the sixth Framework Programme of the European Community (GSOMEN and ATHENA), and by the seventh Framework Programme of the European Community (ERC Advanced Grant SEPON) is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cesare Franchini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Franchini, C., Allegretti, F. (2012). Low Dimensionality and Epitaxial Stabilization in Metal-Supported Oxide Nanostructures: Mnx Oy on Pd(100) Mnx Oy. In: Wu, J., Cao, J., Han, WQ., Janotti, A., Kim, HC. (eds) Functional Metal Oxide Nanostructures. Springer Series in Materials Science, vol 149. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9931-3_10

Download citation

Publish with us

Policies and ethics