Skip to main content

Quantitative Molecular Imaging in Living Cells via FLIM

  • Chapter
  • First Online:
Reviews in Fluorescence 2010

Part of the book series: Reviews in Fluorescence ((RFLU,volume 2010))

Abstract

Fluorescence lifetime imaging microscopy (FLIM) employs fluorophore lifetime, rather than fluorescence intensity, for image contrast. Compared to intensity-based methods, lifetime imaging requires less calibration and/or correction for fluorophore concentration variations, photobleaching, and other artifacts that affect intensity measurements. We describe FLIM applications to probe the microenvironments of endogenous and exogenous fluorophores, including measurements of cellular metabolic co-factors, intracellular and extracellular oxygen, and molecular interactions via Förster resonance energy transfer (FRET). Several applications of FLIM for quantitative, live cell imaging are presented, including studies of cellular metabolic pathways, improved FRET detection of oncogene association, microfluidic bioreactor characterization for continuous cell culture, and improved analysis of FLIM images including image restoration and precision enhancement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  2. Chang CW, Sud D, Mycek MA (2007) Fluorescence lifetime imaging microscopy. Methods Cell Biol 81:495–524

    Article  PubMed  CAS  Google Scholar 

  3. Takanishi CL, Bykova EA, Cheng W, Zheng J (2006) GFP-based FRET analysis in live cells. Brain Res 1091(1):132–139

    Article  PubMed  CAS  Google Scholar 

  4. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    Article  PubMed  CAS  Google Scholar 

  5. Zal T, Gascoigne NR (2004) Photobleaching-corrected FRET efficiency imaging of live cells. Biophys J 86(6):3923–3939

    Article  PubMed  CAS  Google Scholar 

  6. Grant DM, McGinty J, McGhee EJ, Bunney TD, Owen DM, Talbot CB, Zhang W, Kumar S, Munro I, Lanigan PM, Kennedy GT, Dunsby C, Magee AI, Courtney P, Katan M, Neil MA, French PM (2007) High speed optically sectioned fluorescence lifetime imaging permits study of live cell signaling events. Opt Express 15(24):15656–15673

    Article  PubMed  CAS  Google Scholar 

  7. Kumar S, Dunsby C, De Beule PAA, Owen DM, Anand U, Lanigan PMP, Benninger RKP, Davis DM, Neil MAA, Anand P, Benham C, Naylor A, French PMW (2007) Multifocal multiphoton excitation and time correlated single photon counting detection for 3-D fluorescence lifetime imaging. Opt Express 15(20):12548–12561

    Article  PubMed  CAS  Google Scholar 

  8. Schlachter S, Elder AD, Esposito A, Kaminski GS, Frank JH, van Geest LK, Kaminski CF (2009) mhFLIM: resolution of heterogeneous fluorescence decays in widefield lifetime microscopy. Opt Express 17(3):1557–1570

    Article  PubMed  CAS  Google Scholar 

  9. Kuchibhotla KV, Lattarulo CR, Hyman BT, Bacskai BJ (2009) Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice. Science 323(5918):1211–1215

    Article  PubMed  CAS  Google Scholar 

  10. Kotaleski JH, Blackwell KT (2010) Modelling the molecular mechanisms of synaptic plasticity using systems biology approaches. Nat Rev Neurosci 11(4):239–251

    Article  PubMed  Google Scholar 

  11. Marcu L (2010) Fluorescence lifetime in cardiovascular diagnostics. J Biomed Opt 15(1): 011106

    Article  PubMed  Google Scholar 

  12. Seefeldt B, Kasper R, Seidel T, Tinnefeld P, Dietz KJ, Heilemann M, Sauer M (2008) Fluorescent proteins for single-molecule fluorescence applications. J Biophotonics 1(1):74–82

    Article  PubMed  CAS  Google Scholar 

  13. Schweitzer D, Quick S, Schenke S, Klemm M, Gehlert S, Hammer M, Jentsch S, Fischer J (2009) Comparison of parameters of time-resolved autofluorescence between healthy subjects and patients suffering from early AMD. Ophthalmologe 106(8):714–722

    Article  PubMed  CAS  Google Scholar 

  14. Schweitzer D, Schenke S, Hammer M, Schweitzer F, Jentsch S, Birckner E, Becker W, Bergmann A (2007) Towards metabolic mapping of the human retina. Microsc Res Tech 70(5):410–419

    Article  PubMed  CAS  Google Scholar 

  15. Urayama P, Zhong W, Beamish JA, Minn FK, Sloboda RD, Dragnev KH, Dmitrovsky E, Mycek MA (2003) A UV-visible-NIR fluorescence lifetime imaging microscope for laser-based biological sensing with picosecond resolution. Appl Phys B 76(5):483–496

    CAS  Google Scholar 

  16. Zhong W, Wu M, Chang CW, Merrick KA, Merajver SD, Mycek MA (2007) Picosecond-resolution fluorescence lifetime imaging microscopy: a useful tool for sensing molecular interactions in vivo via FRET. Opt Express 15(26):18220–18235

    Article  PubMed  Google Scholar 

  17. Requejo-Isidro J, McGinty J, Munro I, Elson DS, Galletly NP, Lever MJ, Neil MAA, Stamp GWH, French PMW, Kellett PA, Hares JD, Dymoke-Bradshaw AKL (2004) High-speed wide-field time-gated endoscopic fluorescence-lifetime imaging. Opt Lett 29(19):2249–2251

    Article  PubMed  CAS  Google Scholar 

  18. Munro I, McGinty J, Galletly N, Requejo-Isidro J, Lanigan PM, Elson DS, Dunsby C, Neil MA, Lever MJ, Stamp GW, French PM (2005) Toward the clinical application of time-domain fluorescence lifetime imaging. J Biomed Opt 10(5):051403

    Article  PubMed  CAS  Google Scholar 

  19. Cano-Raya C, Ramos MDF, Vallvey LFC, Wolfbeis OS, Schaferling M (2005) Fluorescence quenching of the europium tetracycline hydrogen peroxide complex by copper(II) and other metal ions. Appl Spectrosc 59(10):1209–1216

    Article  PubMed  CAS  Google Scholar 

  20. Urayama PK, Mycek MA (2003) Fluorescence lifetime imaging microscopy of endogenous biological fluorescence. In: Mycek MA, Pogue BW (eds) Handbook of biomedical fluorescence. Marcel-Dekker, New York, pp 211–236

    Google Scholar 

  21. Sud D, Zhong W, Beer DG, Mycek MA (2006) Time-resolved optical imaging provides a molecular snapshot of altered metabolic function in living human cancer cell models. Opt Express 14(10):4412–4426

    Article  PubMed  CAS  Google Scholar 

  22. Xu Z, Raghavan M, Hall TL, Chang CW, Mycek MA, Fowlkes JB, Cain CA (2007) High speed imaging of bubble clouds generated in pulsed ultrasound cavitational therapy-histotripsy. IEEE Trans Ultrason Ferroelectr Freq Control 54(10):2091–2101

    Article  PubMed  Google Scholar 

  23. Pitts JD, Mycek MA (2001) Design and development of a rapid acquisition laser-based fluorometer with simultaneous spectral and temporal resolution. Rev Sci Instrum 72(7):3061–3072

    Article  CAS  Google Scholar 

  24. Chang CW, Wu M, Merajver SD, Mycek MA (2009) Physiological fluorescence lifetime imaging microscopy improves Förster resonance energy transfer detection in living cells. J Biomed Opt 14(6):060502

    Article  PubMed  Google Scholar 

  25. Bugiel I, König K, Wabnitz H (1989) Investigation of cell by fluorescence laser scanning microscopy with subnanosecond time resolution. Lasers Life Sci 3(1):47–53

    Google Scholar 

  26. Wang XF, Uchida T, Coleman DM, Minami S (1991) A two-dimensional fluorescence lifetime imaging system using a gated image intensifier. Appl Spectrosc 45(3):360–366

    Article  CAS  Google Scholar 

  27. Sharman KK, Periasamy A, Ashworth H, Demas JN, Snow NH (1999) Error analysis of the rapid lifetime determination method for double-exponential decays and new windowing schemes. Anal Chem 71(5):947–952

    Article  PubMed  CAS  Google Scholar 

  28. Sud D, Mycek MA (2008) Image restoration for fluorescence lifetime imaging microscopy (FLIM). Opt Express 16(23):19192–19200

    Article  PubMed  CAS  Google Scholar 

  29. Chang CW, Mycek MA (2009) Improving precision in time-gated FLIM for low-light live-cell imaging. Proc SPIE 7370(2009):7370091–7370096

    Google Scholar 

  30. Vonesch C (2009) Fast and automated wavelet-regularized image restoration in fluorescence microscopy. PhD thesis, École Polytechnique Fédérale De Lausanne, Lausanne

    Google Scholar 

  31. Buranachai C, Kamiyama D, Chiba A, Williams BD, Clegg RM (2008) Rapid frequency-domain FLIM spinning disk confocal microscope: Lifetime resolution, image improvement and wavelet analysis. J Fluoresc 18(5):929–942

    Article  PubMed  CAS  Google Scholar 

  32. Buades A, Coll B, Morel JM (2005) A review of image denoising algorithms, with a new one. Multiscale Model Simul 4(2):490–530

    Article  Google Scholar 

  33. Chang CW, Mycek MA (2010) Increasing precision of lifetime determination in fluorescence lifetime imaging. Proc SPIE 7570(2010):757007

    Article  Google Scholar 

  34. Chang C-W, Mycek M-A (2010) Precise fluorophore lifetime mapping in live-cell, multi-photon excitation microscopy. Opt Express 18(8):8688–8696

    Article  PubMed  CAS  Google Scholar 

  35. Boulanger J, Sibarita JB, Kervrann C, Bouthemy P (2008) Non-parametric regression for patch-based fluorescence microscopy image sequence denoising. In: IEEE international symposium on biomedical imaging: from nano to macro, vols 1–4, pp 748–751

    Google Scholar 

  36. Delpretti S, Luisier F, Ramani S, Blu T, Unser M (2008) Multiframe SURE-LET denoising of timelapse fluorescence microscopy images. In: IEEE international symposium on biomedical imaging: from nano to macro, vols 1–4, pp 149–152

    Google Scholar 

  37. Gu W, Zhu XY, Futai N, Cho BS, Takayama S (2004) Computerized microfluidic cell culture using elastomeric channels and Braille displays. Proc Natl Acad Sci USA 101(45): 15861–15866

    Article  PubMed  CAS  Google Scholar 

  38. Dobrucki JW (2001) Interaction of oxygen-sensitive luminescent probes Ru(phen)(3)(2+) and Ru(bipy)(3)(2+) with animal and plant cells in vitro – mechanism of phototoxicity and conditions for non-invasive oxygen measurements. J Photochem Photobiol B Biol 65(2–3):136–144

    Article  CAS  Google Scholar 

  39. Asiedu JK, Ji J, Nguyen M, Rosenzweig N, Rosenzweig Z (2001) Development of a digital fluorescence sensing technique to monitor the response of macrophages to external hypoxia. J Biomed Opt 6(2):116–121

    Article  PubMed  CAS  Google Scholar 

  40. Ji J, Rosenzweig N, Jones I, Rosenzweig Z (2002) Novel fluorescent oxygen indicator for intracellular oxygen measurements. J Biomed Opt 7(3):404–409

    Article  PubMed  CAS  Google Scholar 

  41. Castellano FN, Lakowicz JR (1998) A water-soluble luminescence oxygen sensor. Photochem Photobiol 67(2):179–183

    Article  PubMed  CAS  Google Scholar 

  42. Gerritsen HC, Sanders R, Draaijer A, Levine YK (1997) Fluorescence lifetime imaging of oxygen in living cells. J Fluoresc 7:11–16

    Article  CAS  Google Scholar 

  43. Malak H, Dobrucki JW, Malak MM, Swartz HM (1998) Oxygen sensing in a single cell with ruthenium complexes and fluorescence time-resolved microscopy. Biophys J 74(2):A189

    Google Scholar 

  44. Lakowicz JR (1999) Principles of fluorescence spectroscopy. Kluwer Academic, New York

    Google Scholar 

  45. Zhong W, Urayama P, Mycek MA (2003) Imaging fluorescence lifetime modulation of a ruthenium-based dye in living cells: the potential for oxygen sensing. J Phys D Appl Phys 36(14):1689–1695

    Article  CAS  Google Scholar 

  46. Kutala VK, Parinandi NL, Pandian RP, Kuppusamy P (2004) Simultaneous measurement of oxygenation in intracellular and extracellular compartments of lung microvascular endothelial cells. Antioxid Redox Signal 6(3):597–603

    Article  PubMed  CAS  Google Scholar 

  47. Sud D, Mycek MA (2009) Calibration and validation of an optical sensor for intracellular oxygen measurements. J Biomed Opt 14(2):020506

    Article  PubMed  Google Scholar 

  48. Sud D, Mehta G, Mehta K, Linderman J, Takayama S, Mycek MA (2006) Optical imaging in microfluidic bioreactors enables oxygen monitoring for continuous cell culture. J Biomed Opt 11(5):050504

    Article  PubMed  Google Scholar 

  49. Leclerc E, Sakai Y, Fujii T (2003) Cell culture in 3-dimensional microfluidic structure of PDMS (polydimethylsiloxane). Biomed Microdevices 5(2):109–114

    Article  CAS  Google Scholar 

  50. Shiku H, Saito T, Wu CC, Yasukawa T, Yokoo M, Abe H, Matsue T, Yamada H (2006) Oxygen permeability of surface-modified poly(dimethylsiloxane) characterized by scanning electrochemical microscopy. Chem Lett 35(2):234–235

    Article  CAS  Google Scholar 

  51. Mehta G, Mehta K, Sud D, Song JW, Bersano-Begey T, Futai N, Heo YS, Mycek MA, Linderman JJ, Takayama S (2007) Quantitative measurement and control of oxygen levels in microfluidic poly(dimethylsiloxane) bioreactors during cell culture. Biomed Microdevices 9(2):123–134

    Article  PubMed  CAS  Google Scholar 

  52. Urayama PK, Mycek MA (2003) Fluorescence lifetime imaging microscopy of endogenous biological fluorescence. In: Mycek MA, Pogue BW (eds) Handbook of biomedical fluorescence. Marcel Dekker, New York

    Google Scholar 

  53. Ramanujam N (2000) Fluorescence spectroscopy of neoplastic and non-neoplastic tissues. Neoplasia 2(1–2):89–117

    Article  PubMed  CAS  Google Scholar 

  54. Lakowicz JR, Szmacinski H, Nowaczyk K, Johnson ML (1992) Fluorescence lifetime imaging of free and protein-bound NADH. Proc Natl Acad Sci USA 89:1271–1275

    Article  PubMed  CAS  Google Scholar 

  55. Schneckenburger H, König K (1992) Fluorescence decay and imaging of NAD(P)H and ­flavins as metabolic indicators. Opt Eng 31(7):1447–1451

    Article  CAS  Google Scholar 

  56. Georgakoudi I, Jacobson BC, Muller MG, Sheets EE, Badizadegan K, Carr-Locke DL, Crum CP, Boone CW, Dasari RR, Van Dam J, Feld MS (2002) NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes. Cancer Res 62(3):682–687

    PubMed  CAS  Google Scholar 

  57. Förster T (1948) Intermolecular energy migration and fluorescence. Ann Phys (Leitzig) 2: 55–75

    Article  Google Scholar 

  58. Kreiss P, Cameron B, Rangara R, Mailhe P, Aguerre-Charriol O, Airiau M, Scherman D, Crouzet J, Pitard B (1999) Plasmid DNA size does not affect the physicochemical properties of lipoplexes but modulates gene transfer efficiency. Nucleic Acids Res 27(19):3792–3798

    Article  PubMed  CAS  Google Scholar 

  59. Ross PC, Hui SW (1999) Lipoplex size is a major determinant of in vitro lipofection efficiency. Gene Ther 6(4):651–659

    Article  PubMed  CAS  Google Scholar 

  60. Schmid JA, Sitte HH (2003) Fluorescence resonance energy transfer in the study of cancer pathways. Curr Opin Oncol 15:55–64

    Article  PubMed  Google Scholar 

  61. Wallrabe H, Periasamy A (2005) Imaging protein molecules using FRET and FLIM microscopy. Curr Opin Biotechnol 16(1):19–27

    Article  PubMed  CAS  Google Scholar 

  62. Chen Y, Elangovan M, Periasamy A (2005) FRET data analysis: the algorithm. In: Periasamy A, Day RN (eds) Molecular imaging. Oxford University Press, New York, pp 126–145

    Chapter  Google Scholar 

  63. Demarco IA, Periasamy A, Booker CF, Day RN (2006) Monitoring dynamic protein interactions with photoquenching FRET. Nat Methods 3(7):519–524

    Article  PubMed  CAS  Google Scholar 

  64. Hoppe A, Christensen K, Swanson JA (2002) Fluorescence resonance energy transfer-based stoichiometry in living cells. Biophys J 83(6):3652–3664

    Article  PubMed  CAS  Google Scholar 

  65. Chen Y, Mills JD, Periasamy A (2003) Protein localization in living cells and tissues using FRET and FLIM. Differentiation 71(9–10):528–541

    Article  PubMed  CAS  Google Scholar 

  66. Provenzano PP, Eliceiri KW, Keely PJ (2009) Multiphoton microscopy and fluorescence lifetime imaging microscopy (FLIM) to monitor metastasis and the tumor microenvironment. Clin Exp Metastasis 26(4):357–370

    Article  PubMed  CAS  Google Scholar 

  67. Yi YH, Ho PY, Chen TW, Lin WJ, Gukassyan V, Tsai TH, Wang DW, Lew TS, Tang CY, Lo SJ, Chen TY, Kao FJ, Lin CH (2009) Membrane targeting and coupling of NHE1-integrin{alpha}IIb{beta}3-NCX1 by lipid rafts following integrin-ligand interactions trigger Ca2+ oscillations. J Biol Chem 284(6):3855–3864

    Article  PubMed  CAS  Google Scholar 

  68. Chen Y, Periasamy A (2004) Characterization of two-photon excitation fluorescence lifetime imaging microscopy for protein localization. Microsc Res Tech 63(1):72–80

    Article  PubMed  CAS  Google Scholar 

  69. Vermeer JE, Van Munster EB, Vischer NO, Gadella TW Jr (2004) Probing plasma membrane microdomains in cowpea protoplasts using lipidated GFP-fusion proteins and multimode FRET microscopy. J Microsc 214(Pt 2):190–200

    Article  PubMed  CAS  Google Scholar 

  70. Ng T, Squire A, Hansra G, Bornancin F, Prevostel C, Hanby A, Harris W, Barnes D, Schmidt S, Mellor H, Bastiaens PI, Parker PJ (1999) Imaging protein kinase Calpha activation in cells. Science 283(5410):2085–2089

    Article  PubMed  CAS  Google Scholar 

  71. van Golen KL, Wu ZF, Qiao XT, Bao LW, Merajver SD (2000) RhoC GTPase, a novel transforming oncogene for human mammary epithelial cells that partially recapitulates the inflammatory breast cancer phenotype. Cancer Res 60(20):5832–5838

    PubMed  Google Scholar 

  72. Holeiter G, Heering J, Erlmann P, Schmid S, Jahne R, Olayioye MA (2008) Deleted in Liver Cancer 1 Controls Cell Migration through a Dial-Dependent Signaling Pathway. Cancer Res 68(21):8743–8751

    Article  PubMed  CAS  Google Scholar 

  73. Hoppe AD, Shorte SL, Swanson JA, Heintzmannz R (2008) Three-dimensional FRET reconstruction microscopy for analysis of dynamic molecular interactions in live cells. Biophys J 95(1):400–418

    Article  PubMed  CAS  Google Scholar 

  74. Pertz O, Hodgson L, Klemke RL, Hahn KM (2006) Spatiotemporal dynamics of RhoA activity in migrating cells. Nature 440(7087):1069–1072

    Article  PubMed  CAS  Google Scholar 

  75. Semenova MM, Maki-Hokkonen AMJ, Cao J, Komarovski V, Forsberg KM, Koistinaho M, Coffey ET, Courtney MJ (2007) Rho mediates calcium-dependent activation of p38 alpha and subsequent excitotoxic cell death. Nat Neurosci 10(4):436–443

    PubMed  CAS  Google Scholar 

  76. Hodgson L, Pertz O, Hahn KM (2008) Design and optimization of genetically encoded fluorescent biosensors: GTPase biosensors. Methods Cell Biol 85:63–81

    Article  PubMed  CAS  Google Scholar 

  77. Nakamura T, Aoki K, Matsuda M (2005) Monitoring spatio-temporal regulation of Ras and Rho GTPases with GFP-based FRET probes. Methods 37(2):146–153

    Article  PubMed  CAS  Google Scholar 

  78. Ahmed T, Shea K, Masters JRW, Jones GE, Wells CM (2008) A PAK4-LIMK1 pathway drives prostate cancer cell migration downstream of HGF. Cell Signal 20(7):1320–1328

    Article  PubMed  CAS  Google Scholar 

  79. Legg JW, Lewis CA, Parsons M, Ng T, Isacke CM (2002) A novel PKC-regulated mechanism controls CD44-ezrin association and directional cell motility. Nat Cell Biol 4(6):399–407

    Article  PubMed  CAS  Google Scholar 

  80. Parsons M, Monypenny J, Ameer-Beg SM, Millard TH, Machesky LM, Peter M, Keppler MD, Schiavo G, Watson R, Chernoff J, Zicha D, Vojnovic B, Ng T (2005) Spatially distinct binding of Cdc42 to PAK1 and N-WASP in breast carcinoma cells. Mol Cell Biol 25(5):1680–1695

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge technical contributions from and helpful discussions with Drs. Mei Wu, Sofia D. Merajver, Dhruv Sud, Wei Zhong, Paul Urayama, David G. Beer, Jennifer Linderman, Shuichi Takayama, and Geeta Mehta, as well as Karl A. Merrick, Khamir Mehta, Jonathon Girroir, and Joe Delli. This work was supported in part by funding from the National Institutes of Health (CA-112173, CA-77612, and CA-114542) and The Whitaker Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary-Ann Mycek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Chang, CW., Mycek, MA. (2012). Quantitative Molecular Imaging in Living Cells via FLIM. In: Geddes, C. (eds) Reviews in Fluorescence 2010. Reviews in Fluorescence, vol 2010. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9828-6_8

Download citation

Publish with us

Policies and ethics