Skip to main content

Copper and Alzheimer Disease: The Good, the Bad and the Ugly

  • Chapter
  • First Online:
Metal Ion in Stroke

Abstract

Copper is vital to normal brain function; but its potent redox activity demands tight regulation to maintain the integrity of copper homeostasis. Disrupted regulation can result in copper displacement, causing inadvertent interactions between copper and cellular components, which can enhance the production of reactive oxygen species (ROS), formation of neurotoxic copper–protein aggregates, and eventually, neuronal cell death. Disrupted copper homeostasis is a feature common to many neurological disorders, such as Alzheimer’s disease (AD), Parkinson’s disease, Wilson’s disease, Menkes disease and prion disease. This review focuses on the involvement of copper in AD. An intrinsic reciprocal relationship exists between copper and AD-associated proteins, amyloid precursor protein (APP) and BACE1. Under conditions of copper dysregulation, the postsynaptic release of both copper and Aβ into the synaptic cleft of glutamatergic neurons promotes the abnormal interaction of redox-active Aβ with copper, forming neurotoxic soluble Aβ oligomers. A cascade of Aβ aggregation ensues, resulting in extracellular amyloid plaques, a pathological hallmark of AD. Additionally, copper also participates in the aggregation of tau, the core component of neurofibrillary tangles, which is the other defining pathology of AD brains. Therapeutic strategies targeting interactions among Aβ, tau and metals to restore copper and metal balance have disease-modifying promise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acevedo KM, Hung YH, Dalziel AH, Li QX, Laughton K, Wikhe K, Rembach A, Roberts B, Masters CL, Bush AI et al (2011) Copper promotes the trafficking of the amyloid precursor protein. J Biol Chem 286:8252–8262

    PubMed  CAS  Google Scholar 

  • Adlard PA, Bush AI (2006) Metals and Alzheimer’s disease. J Alzheimers Dis 10:145–163

    PubMed  Google Scholar 

  • Adlard PA, Cherny RA, Finkelstein DI, Gautier E, Robb E, Cortes M, Volitakis I, Liu X, Smith JP, Perez K et al (2008) Rapid restoration of cognition in Alzheimer’s transgenic mice with 8-hydroxy quinoline analogs is associated with decreased interstitial Abeta. Neuron 59:43–55

    PubMed  CAS  Google Scholar 

  • Adlard PA, Bica L, White AR, Nurjono M, Filiz G, Crouch PJ, Donnelly PS, Cappai R, Finkelstein DI, Bush AI (2011) Metal ionophore treatment restores dendritic spine density and synaptic protein levels in a mouse model of Alzheimer’s disease. PLoS One 6:e17669

    PubMed  CAS  Google Scholar 

  • Ali FE, Barnham KJ, Barrow CJ, Separovic F (2004) Metal catalyzed oxidation of tyrosine residues by different oxidation systems of copper/hydrogen peroxide. J Inorg Biochem 98:173–184

    PubMed  CAS  Google Scholar 

  • Allinson TM, Parkin ET, Turner AJ, Hooper NM (2003) ADAMs family members as amyloid precursor protein alpha-secretases. J Neurosci Res 74:342–352

    PubMed  CAS  Google Scholar 

  • Alzheimer A (1907) Über eine eigenartige Erkrankung der Hirnrinde. Allgemeine Zeitschr Psychiatr Psych Gerichtl Med 64:146–148

    Google Scholar 

  • Amaravadi R, Glerum DM, Tzagoloff A (1997) Isolation of a cDNA encoding the human homolog of COX17, a yeast gene essential for mitochondrial copper recruitment. Hum Genet 99:329–333

    PubMed  CAS  Google Scholar 

  • Angeletti B, Waldron KJ, Freeman KB, Bawagan H, Hussain I, Miller CC, Lau KF, Tennant ME, Dennison C, Robinson NJ et al (2005) BACE1 cytoplasmic domain interacts with the copper chaperone for superoxide dismutase-1 and binds copper. J Biol Chem 280:17930–17937

    PubMed  CAS  Google Scholar 

  • Armendariz AD, Gonzalez M, Loguinov AV, Vulpe CD (2004) Gene expression profiling in chronic copper overload reveals upregulation of Prnp and App. Physiol Genomics 20:45–54

    PubMed  CAS  Google Scholar 

  • Arredondo M, Munoz P, Mura CV, Nunez MT (2003) DMT1, a physiologically relevant apical Cu1+ transporter of intestinal cells. Am J Physiol Cell Physiol 284:C1525–1530

    PubMed  CAS  Google Scholar 

  • Arundine M, Tymianski M (2004) Molecular mechanisms of glutamate-dependent neurodegeneration in ischemia and traumatic brain injury. Cell Mol Life Sci 61:657–668

    PubMed  CAS  Google Scholar 

  • Atwood CS, Moir RD, Huang X, Scarpa RC, Bacarra NM, Romano DM, Hartshorn MA, Tanzi RE, Bush AI (1998) Dramatic aggregation of Alzheimer Abeta by Cu(II) is induced by conditions representing physiological acidosis. J Biol Chem 273:12817–12826

    PubMed  CAS  Google Scholar 

  • Atwood CS, Perry G, Zeng H, Kato Y, Jones WD, Ling KQ, Huang X, Moir RD, Wang D, Sayre LM et al (2004) Copper mediates dityrosine cross-linking of Alzheimer’s amyloid-beta. Biochemistry 43:560–568

    PubMed  CAS  Google Scholar 

  • Avila J, Lucas JJ, Perez M, Hernandez F (2004a) Role of tau protein in both physiological and pathological conditions. Physiol Rev 84:361–384

    PubMed  CAS  Google Scholar 

  • Avila J, Perez M, Lim F, Gomez-Ramos A, Hernandez F, Lucas JJ (2004b) Tau in neurodegenerative diseases: tau phosphorylation and assembly. Neurotox Res 6:477–482

    PubMed  CAS  Google Scholar 

  • Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E (2011) Alzheimer’s disease. Lancet 377:1019–1031

    PubMed  Google Scholar 

  • Barnea A, Hartter DE, Cho G, Bhasker KR, Katz BM, Edwards MD (1990) Further characterization of the process of in vitro uptake of radiolabeled copper by the rat brain. J Inorg Biochem 40:103–110

    PubMed  CAS  Google Scholar 

  • Barnes N, Tsivkovskii R, Tsivkovskaia N, Lutsenko S (2005) The copper-transporting ATPases, Menkes and Wilson disease proteins, have distinct roles in adult and developing cerebellum. J Biol Chem 280:9640–9645

    PubMed  CAS  Google Scholar 

  • Barnham KJ, Ciccotosto GD, Tickler AK, Ali FE, Smith DG, Williamson NA, Lam YH, Carrington D, Tew D, Kocak G et al (2003a) Neurotoxic, redox-competent Alzheimer’s beta-amyloid is released from lipid membrane by methionine oxidation. J Biol Chem 278:42959–42965

    PubMed  CAS  Google Scholar 

  • Barnham KJ, McKinstry WJ, Multhaup G, Galatis D, Morton CJ, Curtain CC, Williamson NA, White AR, Hinds MG, Norton RS et al (2003b) Structure of the Alzheimer’s disease amyloid precursor protein copper binding domain. A regulator of neuronal copper homeostasis. J Biol Chem 278:17401–17407

    PubMed  CAS  Google Scholar 

  • Barnham KJ, Haeffner F, Ciccotosto GD, Curtain CC, Tew D, Mavros C, Beyreuther K, Carrington D, Masters CL, Cherny RA et al (2004) Tyrosine gated electron transfer is key to the toxic mechanism of Alzheimer’s disease beta-amyloid. FASEB J 18:1427–1429

    PubMed  CAS  Google Scholar 

  • Bayer TA, Wirths O, Majtenyi K, Hartmann T, Multhaup G, Beyreuther K, Czech C (2001) Key factors in Alzheimer’s disease: beta-amyloid precursor protein processing, metabolism and intraneuronal transport. Brain Pathol 11:1–11

    PubMed  CAS  Google Scholar 

  • Bayer TA, Schafer S, Simons A, Kemmling A, Kamer T, Tepest R, Eckert A, Schussel K, Eikenberg O, Sturchler-Pierrat C et al (2003) Dietary Cu stabilizes brain superoxide dismutase 1 activity and reduces amyloid Abeta production in APP23 transgenic mice. Proc Natl Acad Sci USA 100:14187–14192

    PubMed  CAS  Google Scholar 

  • Bearn AG, Kunkel HG (1954) Localization of Cu64 in serum fractions following oral administration: an alteration in Wilson’s disease. Proc Soc Exp Biol Med 85:44–48

    PubMed  CAS  Google Scholar 

  • Beers J, Glerum DM, Tzagoloff A (1997) Purification, characterization, and localization of yeast Cox17p, a mitochondrial copper shuttle. J Biol Chem 272:33191–33196

    PubMed  CAS  Google Scholar 

  • Bellingham SA, Ciccotosto GD, Needham BE, Fodero LR, White AR, Masters CL, Cappai R, Camakaris J (2004a) Gene knockout of amyloid precursor protein and amyloid precursor-like protein-2 increases cellular copper levels in primary mouse cortical neurons and embryonic fibroblasts. J Neurochem 91:423–428

    PubMed  CAS  Google Scholar 

  • Bellingham SA, Lahiri DK, Maloney B, La Fontaine S, Multhaup G, Camakaris J (2004b) Copper depletion down-regulates expression of the Alzheimer’s disease amyloid-beta precursor protein gene. J Biol Chem 279:20378–20386

    PubMed  CAS  Google Scholar 

  • Bellingham SA, Coleman LA, Masters CL, Camakaris J, Hill AF (2009) Regulation of prion gene expression by transcription factors SP1 and metal transcription factor-1. J Biol Chem 284:1291–1301

    PubMed  CAS  Google Scholar 

  • Beyreuther K, Multhaup G, Monning U, Sandbrink R, Beher D, Hesse L, Small DH, Masters CL (1996) Regulation of APP expression, biogenesis and metabolism by extracellular matrix and cytokines. Ann N Y Acad Sci 777:74–76

    PubMed  CAS  Google Scholar 

  • Bhatia R, Lin H, Lal R (2000) Fresh and globular amyloid beta protein (1–42) induces rapid cellular degeneration: evidence for AbetaP channel-mediated cellular toxicity. FASEB J 14:1233–1243

    PubMed  CAS  Google Scholar 

  • Bishop GM, Robinson SR (2004) The amyloid paradox: amyloid-beta-metal complexes can be neurotoxic and neuroprotective. Brain Pathol 14:448–452

    PubMed  CAS  Google Scholar 

  • Borchardt T, Camakaris J, Cappai R, Masters CL, Beyreuther K, Multhaup G (1999) Copper inhibits beta-amyloid production and stimulates the non-amyloidogenic pathway of amyloid-precursor-protein secretion. Biochem J 344(Pt 2):461–467

    PubMed  CAS  Google Scholar 

  • Braak H, Braak E (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 82:239–259

    PubMed  CAS  Google Scholar 

  • Bull PC, Thomas GR, Romments JM, Forbe JR, Cox DW (1993) The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nat Genet 5:327–337

    PubMed  CAS  Google Scholar 

  • Bush AI, Tanzi RE (2008) Therapeutics for Alzheimer’s disease based on the metal hypothesis. Neurotherapeutics 5:421–432

    PubMed  CAS  Google Scholar 

  • Butner KA, Kirschner MW (1991) Tau protein binds to microtubules through a flexible array of distributed weak sites. J Cell Biol 115:717–730

    PubMed  CAS  Google Scholar 

  • Campbell CH, Brown R, Linder MC (1981) Circulating ceruloplasmin is an important source of copper for normal and malignant animal cells. Biochim Biophys Acta 678:27–38

    PubMed  CAS  Google Scholar 

  • Cappai R, Barnham KJ (2008) Delineating the mechanism of Alzheimer’s disease Abeta peptide neurotoxicity. Neurochem Res 33:526–532

    PubMed  CAS  Google Scholar 

  • Cater MA, McInnes KT, Li QX, Volitakis I, La Fontaine S, Mercer JF, Bush AI (2008) Intracellular copper deficiency increases amyloid-beta secretion by diverse mechanisms. Biochem J 412:141–152

    PubMed  CAS  Google Scholar 

  • Cerpa WF, Barria MI, Chacon MA, Suazo M, Gonzalez M, Opazo C, Bush AI, Inestrosa NC (2004) The N-terminal copper-binding domain of the amyloid precursor protein protects against Cu2+ neurotoxicity in vivo. FASEB J 18:1701–1703

    PubMed  CAS  Google Scholar 

  • Chelly J, Tumer Z, Tonnesen T, Petterson A, Ishikawa-Brush Y, Tommerup N, Horn N, Monaco AP (1993) Isolation of a candidate gene for Menkes disease that encodes a potential heavy metal binding protein. Nat Genet 3:14–19

    PubMed  CAS  Google Scholar 

  • Chen K, Kazachkov M, Yu PH (2007) Effect of aldehydes derived from oxidative deamination and oxidative stress on beta-amyloid aggregation; pathological implications to Alzheimer’s disease. J Neural Transm 114:835–839

    PubMed  CAS  Google Scholar 

  • Cheng H, Vetrivel KS, Gong P, Meckler X, Parent A, Thinakaran G (2007) Mechanisms of disease: new therapeutic strategies for Alzheimer’s disease-targeting APP processing in lipid rafts. Nat Clin Pract Neurol 3:374–382

    PubMed  CAS  Google Scholar 

  • Cherny RA, Atwood CS, Xilinas ME, Gray DN, Jones WD, McLean CA, Barnham KJ, Volitakis I, Fraser FW, Kim Y et al (2001) Treatment with a copper–zinc chelator markedly and rapidly inhibits beta-amyloid accumulation in Alzheimer’s disease transgenic mice. Neuron 30:665–676

    PubMed  CAS  Google Scholar 

  • Choi BS, Zheng W (2009) Copper transport to the brain by the blood–brain barrier and blood–CSF barrier. Brain Res 1248:14–21

    PubMed  CAS  Google Scholar 

  • Ciccotosto GD, Tew D, Curtain CC, Smith D, Carrington D, Masters CL, Bush AI, Cherny RA, Cappai R, Barnham KJ (2004) Enhanced toxicity and cellular binding of a modified amyloid beta peptide with a methionine to valine substitution. J Biol Chem 279:42528–42534

    PubMed  CAS  Google Scholar 

  • Citron M, Diehl TS, Gordon G, Biere AL, Seubert P, Selkoe DJ (1996) Evidence that the 42- and 40-amino acid forms of amyloid beta protein are generated from the beta-amyloid precursor protein by different protease activities. Proc Natl Acad Sci USA 93:13170–13175

    PubMed  CAS  Google Scholar 

  • Citron M, Westaway D, Xia W, Carlson G, Diehl T, Levesque G, Johnson-Wood K, Lee M, Seubert P, Davis A et al (1997) Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid beta-protein in both transfected cells and transgenic mice. Nat Med 3:67–72

    PubMed  CAS  Google Scholar 

  • Cobbold C, Coventry J, Ponnambalam S, Monaco AP (2004) Actin and microtubule regulation of trans-Golgi network architecture, and copper-dependent protein transport to the cell surface. Mol Membr Biol 21:59–66

    PubMed  CAS  Google Scholar 

  • Cordy JM, Hussain I, Dingwall C, Hooper NM, Turner AJ (2003) Exclusively targeting beta-secretase to lipid rafts by GPI-anchor addition up-regulates beta-site processing of the amyloid precursor protein. Proc Natl Acad Sci USA 100:11735–11740

    PubMed  CAS  Google Scholar 

  • Cordy JM, Hooper NM, Turner AJ (2006) The involvement of lipid rafts in Alzheimer’s disease. Mol Membr Biol 23:111–122

    PubMed  CAS  Google Scholar 

  • Crouch PJ, Hung LW, Adlard PA, Cortes M, Lal V, Filiz G, Perez KA, Nurjono M, Caragounis A, Du T et al (2009) Increasing Cu bioavailability inhibits Abeta oligomers and tau phosphorylation. Proc Natl Acad Sci USA 106:381–386

    PubMed  CAS  Google Scholar 

  • Crouch PJ, Savva MS, Hung LW, Donnelly PS, Mot AI, Parker SJ, Greenough MA, Volitakis I, Adlard PA, Cherny RA et al (2011) The Alzheimer’s therapeutic PBT2 promotes amyloid-beta degradation and GSK3 phosphorylation via a metal chaperone activity. J Neurochem 119:220–230

    Google Scholar 

  • Cuajungco MP, Goldstein LE, Nunomura A, Smith MA, Lim JT, Atwood CS, Huang X, Farrag YW, Perry G, Bush AI (2000) Evidence that the beta-amyloid plaques of Alzheimer’s disease represent the redox-silencing and entombment of Abeta by zinc. J Biol Chem 275:19439–19442

    PubMed  CAS  Google Scholar 

  • Culotta VC, Klomp LW, Strain J, Casareno RL, Krems B, Gitlin JD (1997) The copper chaperone for superoxide dismutase. J Biol Chem 272:23469–23472

    PubMed  CAS  Google Scholar 

  • Curtain CC, Ali F, Volitakis I, Cherny RA, Norton RS, Beyreuther K, Barrow CJ, Masters CL, Bush AI, Barnham KJ (2001) Alzheimer’s disease amyloid-beta binds copper and zinc to generate an allosterically ordered membrane-penetrating structure containing superoxide dismutase-like subunits. J Biol Chem 276:20466–20473

    PubMed  CAS  Google Scholar 

  • Dancis A, Haile D, Yuan DS, Klausner RD (1994a) The Saccharomyces cerevisiae copper transport protein (Ctr1p). Biochemical characterization, regulation by copper, and physiologic role in copper uptake. J Biol Chem 269:25660–25667

    PubMed  CAS  Google Scholar 

  • Dancis A, Yuan DS, Haile D, Askwith C, Eide D, Moehle C, Kaplan J, Klausner RD (1994b) Molecular characterization of a copper transport protein in S. cerevisiae: an unexpected role for copper in iron transport. Cell 76:393–402

    PubMed  CAS  Google Scholar 

  • Das HK, Baez ML (2008) ADR1 interacts with a down-stream positive element to activate PS1 transcription. Front Biosci 13:3439–3447

    PubMed  CAS  Google Scholar 

  • Deibel MA, Ehmann WD, Markesbery WR (1996) Copper, iron, and zinc imbalances in severely degenerated brain regions in Alzheimer’s disease: possible relation to oxidative stress. J Neurol Sci 143:137–142

    PubMed  CAS  Google Scholar 

  • Dingwall C (2007) A copper-binding site in the cytoplasmic domain of BACE1 identifies a possible link to metal homoeostasis and oxidative stress in Alzheimer’s disease. Biochem Soc Trans 35:571–573

    PubMed  CAS  Google Scholar 

  • Dixit R, Ross JL, Goldman YE, Holzbaur EL (2008) Differential regulation of dynein and kinesin motor proteins by tau. Science 319:1086–1089

    PubMed  CAS  Google Scholar 

  • Dobrowolska J, Dehnhardt M, Matusch A, Zoriy M, Palomero-Gallagher N, Koscielniak P, Zilles K, Becker JS (2008) Quantitative imaging of zinc, copper and lead in three distinct regions of the human brain by laser ablation inductively coupled plasma mass spectrometry. Talanta 74:717–723

    PubMed  CAS  Google Scholar 

  • Dong J, Atwood CS, Anderson VE, Siedlak SL, Smith MA, Perry G, Carey PR (2003) Metal binding and oxidation of amyloid-beta within isolated senile plaque cores: Raman microscopic evidence. Biochemistry 42:2768–2773

    PubMed  CAS  Google Scholar 

  • Donnelly RJ, Rasool CG, Bartus R, Vitek S, Blume AJ, Vitek M (1988) Multiple forms of beta-amyloid peptide precursor RNAs in a single cell type. Neurobiol Aging 9:333–338

    PubMed  CAS  Google Scholar 

  • Donnelly RJ, Jacobsen JS, Rasool CG, Blume AJ, Vitek MP (1989) Isolation and expression of multiple forms of beta amyloid protein precursor cDNAs. Prog Clin Biol Res 317:925–937

    PubMed  CAS  Google Scholar 

  • Donnelly PS, Caragounis A, Du T, Laughton KM, Volitakis I, Cherny RA, Sharples RA, Hill AF, Li QX, Masters CL et al (2008) Selective intracellular release of copper and zinc ions from bis(thiosemicarbazonato) complexes reduces levels of Alzheimer disease amyloid-beta peptide. J Biol Chem 283:4568–4577

    PubMed  CAS  Google Scholar 

  • Donsante A, Johnson P, Jansen LA, Kaler SG (2010) Somatic mosaicism in Menkes disease suggests choroid plexus-mediated copper transport to the developing brain. Am J Med Genet A 152A:2529–2534

    PubMed  CAS  Google Scholar 

  • Doreulee N, Yanovsky Y, Haas HL (1997) Suppression of long-term potentiation in hippocampal slices by copper. Hippocampus 7:666–669

    PubMed  CAS  Google Scholar 

  • Dorlet P, Gambarelli S, Faller P, Hureau C (2009) Pulse EPR spectroscopy reveals the coordination sphere of copper(II) ions in the 1–16 amyloid-beta peptide: a key role of the first two N-terminus residues. Angew Chem Int Ed Engl 48:9273–9276

    PubMed  CAS  Google Scholar 

  • Drew SC, Masters CL, Barnham KJ (2009a) Alanine-2 carbonyl is an oxygen ligand in Cu2+ coordination of Alzheimer’s disease amyloid-beta peptide-relevance to N-terminally truncated forms. J Am Chem Soc 131:8760–8761

    PubMed  CAS  Google Scholar 

  • Drew SC, Noble CJ, Masters CL, Hanson GR, Barnham KJ (2009b) Pleomorphic copper coordination by Alzheimer’s disease amyloid-beta peptide. J Am Chem Soc 131:1195–1207

    PubMed  CAS  Google Scholar 

  • Drew SC, Masters CL, Barnham KJ (2010) Alzheimer’s Abeta peptides with disease-associated N-terminal modifications: influence of isomerisation, truncation and mutation on Cu2+ coordination. PLoS One 5:e15875

    PubMed  CAS  Google Scholar 

  • Duce JA, Tsatsanis A, Cater MA, James SA, Robb E, Wikhe K, Leong SL, Perez K, Johanssen T, Greenough MA et al (2010) Iron-export ferroxidase activity of beta-amyloid precursor protein is inhibited by zinc in Alzheimer’s disease. Cell 142:857–867

    PubMed  CAS  Google Scholar 

  • Ehehalt R, Keller P, Haass C, Thiele C, Simons K (2003) Amyloidogenic processing of the Alzheimer beta-amyloid precursor protein depends on lipid rafts. J Cell Biol 160:113–123

    PubMed  CAS  Google Scholar 

  • El Meskini R, Cline LB, Eipper BA, Ronnett GV (2005) The developmentally regulated expression of Menkes protein ATP7A suggests a role in axon extension and synaptogenesis. Dev Neurosci 27:333–348

    PubMed  CAS  Google Scholar 

  • El Meskini R, Crabtree KL, Cline LB, Mains RE, Eipper BA, Ronnett GV (2007) ATP7A (Menkes protein) functions in axonal targeting and synaptogenesis. Mol Cell Neurosci 34:409–421

    PubMed  CAS  Google Scholar 

  • Faux NG, Ritchie CW, Gunn A, Rembach A, Tsatsanis A, Bedo J, Harrison J, Lannfelt L, Blennow K, Zetterberg H et al (2010) PBT2 rapidly improves cognition in Alzheimer’s disease: additional phase II analyses. J Alzheimers Dis 20:509–516

    PubMed  CAS  Google Scholar 

  • Floyd RA (1999) Antioxidants, oxidative stress, and degenerative neurological disorders. Proc Soc Exp Biol Med 222:236–245

    PubMed  CAS  Google Scholar 

  • Freedman JH, Ciriolo MR, Peisach J (1989) The role of glutathione in copper metabolism and toxicity. J Biol Chem 264:5598–5605

    PubMed  CAS  Google Scholar 

  • Gaggelli E, Kozlowski H, Valensin D, Valensin G (2006) Copper homeostasis and neurodegenerative disorders (Alzheimer’s, prion, and Parkinson’s diseases and amyotrophic lateral sclerosis). Chem Rev 106:1995–2044

    PubMed  CAS  Google Scholar 

  • Garrick MD, Nunez MT, Olivares M, Harris ED (2003) Parallels and contrasts between iron and copper metabolism. Biometals 16:1–8

    PubMed  CAS  Google Scholar 

  • Garzon-Rodriguez W, Yatsimirsky AK, Glabe CG (1999) Binding of Zn(II), Cu(II), and Fe(II) ions to Alzheimer’s Abeta peptide studied by fluorescence. Bioorg Med Chem Lett 9:2243–2248

    PubMed  CAS  Google Scholar 

  • Georgatsou E, Mavrogiannis LA, Fragiadakis GS, Alexandraki D (1997) The yeast Fre1p/Fre2p cupric reductases facilitate copper uptake and are regulated by the copper-modulated Mac1p activator. J Biol Chem 272:13786–13792

    PubMed  CAS  Google Scholar 

  • Giuffrida ML, Caraci F, Pignataro B, Cataldo S, De Bona P, Bruno V, Molinaro G, Pappalardo G, Messina A, Palmigiano A et al (2009) Beta-amyloid monomers are neuroprotective. J Neurosci 29:10582–10587

    PubMed  CAS  Google Scholar 

  • Glenner GG, Wong CW (1984) Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 120:885–890

    PubMed  CAS  Google Scholar 

  • Glerum DM, Shtanko A, Tzagoloff A (1996a) Characterization of COX17, a yeast gene involved in copper metabolism and assembly of cytochrome oxidase. J Biol Chem 271:14504–14509

    PubMed  CAS  Google Scholar 

  • Glerum DM, Shtanko A, Tzagoloff A (1996b) SCO1 and SCO2 act as high copy suppressors of a mitochondrial copper recruitment defect in Saccharomyces cerevisiae. J Biol Chem 271:20531–20535

    PubMed  CAS  Google Scholar 

  • Goedert M, Wischik CM, Crowther RA, Walker JE, Klug A (1988) Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Proc Natl Acad Sci USA 85:4051–4055

    PubMed  CAS  Google Scholar 

  • Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA (1989a) Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease. Neuron 3:519–526

    PubMed  CAS  Google Scholar 

  • Goedert M, Spillantini MG, Potier MC, Ulrich J, Crowther RA (1989b) Cloning and sequencing of the cDNA encoding an isoform of microtubule-associated protein tau containing four tandem repeats: differential expression of tau protein mRNAs in human brain. EMBO J 8:393–399

    PubMed  CAS  Google Scholar 

  • Gonzalez C, Martin T, Cacho J, Brenas MT, Arroyo T, Garcia-Berrocal B, Navajo JA, Gonzalez-Buitrago JM (1999) Serum zinc, copper, insulin and lipids in Alzheimer’s disease epsilon 4 apolipoprotein E allele carriers. Eur J Clin Invest 29:637–642

    PubMed  CAS  Google Scholar 

  • Goode BL, Chau M, Denis PE, Feinstein SC (2000) Structural and functional differences between 3-repeat and 4-repeat tau isoforms. Implications for normal tau function and the onset of neurodegenetative disease. J Biol Chem 275:38182–38189

    PubMed  CAS  Google Scholar 

  • Gray EH, De Vos KJ, Dingwall C, Perkinton MS, Miller CC (2010) Deficiency of the copper chaperone for superoxide dismutase increases amyloid-beta production. J Alzheimers Dis 21:1101–1105

    PubMed  CAS  Google Scholar 

  • Green S, Mazur A, Shorr E (1956) Mechanism of the catalytic oxidation of adrenaline by ferritin. J Biol Chem 220:237–255

    PubMed  CAS  Google Scholar 

  • Greenough M, Pase L, Voskoboinik I, Petris MJ, O’Brien AW, Camakaris J (2004) Signals regulating trafficking of Menkes (MNK; ATP7A) copper-translocating P-type ATPase in polarized MDCK cells. Am J Physiol Cell Physiol 287:C1463–1471

    PubMed  CAS  Google Scholar 

  • Greenough MA, Volitakis I, Li QX, Laughton K, Evin G, Ho M, Dalziel AH, Camakaris J, Bush AI (2011) Presenilins promote the cellular uptake of copper and zinc and maintain copper chaperone of SOD1-dependent copper/zinc superoxide dismutase activity. J Biol Chem 286:9776–9786

    PubMed  CAS  Google Scholar 

  • Grimm MO, Grimm HS, Patzold AJ, Zinser EG, Halonen R, Duering M, Tschape JA, De Strooper B, Muller U, Shen J et al (2005) Regulation of cholesterol and sphingomyelin metabolism by amyloid-beta and presenilin. Nat Cell Biol 7:1118–1123

    PubMed  CAS  Google Scholar 

  • Grossi C, Francese S, Casini A, Rosi MC, Luccarini I, Fiorentini A, Gabbiani C, Messori L, Moneti G, Casamenti F (2009) Clioquinol decreases amyloid-beta burden and reduces working memory impairment in a transgenic mouse model of Alzheimer’s Disease. J Alzheimers Dis 17:423–440

    Google Scholar 

  • Gunn AP, Masters CL, Cherny RA (2010) Pyroglutamate-Abeta: role in the natural history of Alzheimer’s disease. Int J Biochem Cell Biol 42:1915–1918

    PubMed  CAS  Google Scholar 

  • Guo Y, Smith K, Petris MJ (2004) Cisplatin stabilizes a multimeric complex of the human Ctr1 copper transporter: requirement for the extracellular methionine-rich clusters. J Biol Chem 279:46393–46399

    PubMed  CAS  Google Scholar 

  • Guo Y, Nyasae L, Braiterman LT, Hubbard AL (2005) NH2-terminal signals in ATP7B Cu-ATPase mediate its Cu-dependent anterograde traffic in polarized hepatic cells. Am J Physiol Gastrointest Liver Physiol 289:G904–916

    PubMed  CAS  Google Scholar 

  • Haass C, Schlossmacher MG, Hung AY, Vigo-Pelfrey C, Mellon A, Ostaszewski BL, Lieberburg I, Koo EH, Schenk D, Teplow DB et al (1992) Amyloid beta-peptide is produced by cultured cells during normal metabolism. Nature 359:322–325

    PubMed  CAS  Google Scholar 

  • Haeffner F, Smith DG, Barnham KJ, Bush AI (2005) Model studies of cholesterol and ascorbate oxidation by copper complexes: relevance to Alzheimer’s disease beta-amyloid metallochemistry. J Inorg Biochem 99:2403–2422

    PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JMC (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219:1–14

    PubMed  CAS  Google Scholar 

  • Hamza I, Gitlin JD (2002) Copper chaperones for cytochrome c oxidase and human disease. J Bioenerg Biomembr 34:381–388

    PubMed  CAS  Google Scholar 

  • Hamza I, Prohaska J, Gitlin JD (2003) Essential role for Atox1 in the copper-mediated intracellular trafficking of the Menkes ATPase. Proc Natl Acad Sci USA 100:1215–1220

    PubMed  CAS  Google Scholar 

  • Hardman B, Manuelpillai U, Wallace EM, Van De Waasenburg S, Cater M, Mercer JF, Ackland ML (2004) Expression and localization of menkes and Wilson copper transporting ATPases in human placenta. Placenta 25:512–517

    PubMed  CAS  Google Scholar 

  • Harrison MD, Dameron CT (1999) Molecular mechanisms of copper metabolism and the role of the Menkes disease protein. J Biochem Mol Toxicol 13:93–106

    PubMed  CAS  Google Scholar 

  • Hartmann T, Bergsdorf C, Sandbrink R, Tienari PJ, Multhaup G, Ida N, Bieger S, Dyrks T, Weidemann A, Masters CL et al (1996) Alzheimer’s disease betaA4 protein release and amyloid precursor protein sorting are regulated by alternative splicing. J Biol Chem 271:13208–13214

    PubMed  CAS  Google Scholar 

  • Hartter DE, Barnea A (1988) Evidence for release of copper in the brain: depolarization-induced release of newly taken-up 67copper. Synapse 2:412–415

    PubMed  CAS  Google Scholar 

  • Hassett R, Kosman DJ (1995) Evidence for Cu(II) reduction as a component of copper uptake by Saccharomyces cerevisiae. J Biol Chem 270:128–134

    PubMed  CAS  Google Scholar 

  • Hattori C, Asai M, Onishi H, Sasagawa N, Hashimoto Y, Saido TC, Maruyama K, Mizutani S, Ishiura S (2006) BACE1 interacts with lipid raft proteins. J Neurosci Res 84:912–917

    PubMed  CAS  Google Scholar 

  • Heicklen-Klein A, Ginzburg I (2000) Tau promoter confers neuronal specificity and binds Sp1 and AP-2. J Neurochem 75:1408–1418

    PubMed  CAS  Google Scholar 

  • Hensley K, Maidt ML, Yu Z, Sang H, Markesbery WR, Floyd RA (1998) Electrochemical analysis of protein nitrotyrosine and dityrosine in the Alzheimer brain indicates region-specific accumulation. J Neurosci 18:8126–8132

    PubMed  CAS  Google Scholar 

  • Hesse L, Beher D, Masters CL, Multhaup G (1994) The beta A4 amyloid precursor protein binding to copper. FEBS Lett 349:109–116

    PubMed  CAS  Google Scholar 

  • Hiltunen M, van Groen T, Jolkkonen J (2009). Functional roles of amyloid-beta protein precursor and amyloid-beta peptides: evidence from experimental studies. J Alzheimers Dis 18:401–412

    Google Scholar 

  • Hoke DE, Tan JL, Ilaya NT, Culvenor JG, Smith SJ, White AR, Masters CL, Evin GM (2005) In vitro gamma-secretase cleavage of the Alzheimer’s amyloid precursor protein correlates to a subset of presenilin complexes and is inhibited by zinc. Febs J 272:5544–5557

    PubMed  CAS  Google Scholar 

  • Hollingworth P, Harold D, Sims R, Gerrish A, Lambert JC, Carrasquillo MM, Abraham R, Hamshere ML, Pahwa JS, Moskvina V et al (2011) Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet 43:429–435

    PubMed  CAS  Google Scholar 

  • Holzer AK, Katano K, Klomp LW, Howell SB (2004) Cisplatin rapidly down-regulates its own influx transporter hCTR1 in cultured human ovarian carcinoma cells. Clin Cancer Res 10:6744–6749

    PubMed  CAS  Google Scholar 

  • Hooper NM (2005) Roles of proteolysis and lipid rafts in the processing of the amyloid precursor protein and prion protein. Biochem Soc Trans 33:335–338

    PubMed  CAS  Google Scholar 

  • Hopt A, Korte S, Fink H, Panne U, Niessner R, Jahn R, Kretzschmar H, Herms J (2003) Methods for studying synaptosomal copper release. J Neurosci Methods 128:159–172

    PubMed  CAS  Google Scholar 

  • Horng YC, Cobine PA, Maxfield AB, Carr HS, Winge DR (2004) Specific copper transfer from the Cox17 metallochaperone to both Sco1 and Cox11 in the assembly of yeast cytochrome C oxidase. J Biol Chem 279:35334–35340

    PubMed  CAS  Google Scholar 

  • Horvath R, Lochmuller H, Stucka R, Yao J, Shoubridge EA, Kim SH, Gerbitz KD, Jaksch M (2000) Characterization of human SCO1 and COX17 genes in mitochondrial cytochrome-c-oxidase deficiency. Biochem Biophys Res Commun 276:530–533

    PubMed  CAS  Google Scholar 

  • Hsi G, Cox DW (2004) A comparison of the mutation spectra of Menkes disease and Wilson disease. Hum Genet 114:165–172

    PubMed  CAS  Google Scholar 

  • Huang X, Atwood CS, Hartshorn MA, Multhaup G, Goldstein LE, Scarpa RC, Cuajungco MP, Gray DN, Lim J, Moir RD et al (1999a) The Abeta peptide of Alzheimer’s disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry 38:7609–7616

    PubMed  CAS  Google Scholar 

  • Huang X, Cuajungco MP, Atwood CS, Hartshorn MA, Tyndall JD, Hanson GR, Stokes KC, Leopold M, Multhaup G, Goldstein LE et al (1999b) Cu(II) potentiation of Alzheimer Abeta neurotoxicity. Correlation with cell-free hydrogen peroxide production and metal reduction. J Biol Chem 274:37111–37116

    PubMed  CAS  Google Scholar 

  • Huang X, Atwood CS, Moir RD, Hartshorn MA, Tanzi RE, Bush AI (2004) Trace metal contamination initiates the apparent auto-aggregation, amyloidosis, and oligomerization of Alzheimer’s Abeta peptides. J Biol Inorg Chem 9:954–960

    PubMed  CAS  Google Scholar 

  • Hung YH, Layton MJ, Voskoboinik I, Mercer JF, Camakaris J (2007) Purification and membrane reconstitution of catalytically active Menkes copper-transporting P-type ATPase (MNK; ATP7A). Biochem J 401:569–579

    PubMed  CAS  Google Scholar 

  • Hung YH, Robb EL, Volitakis I, Ho M, Evin G, Li QX, Culvenor JG, Masters CL, Cherny RA, Bush AI (2009) Paradoxical condensation of copper with elevated β-amyloid in lipid rafts under cellular copper deficiency conditions: implications for Alzheimer disease. J Biol Chem 284:21899–21907

    PubMed  CAS  Google Scholar 

  • Hureau C, Coppel Y, Dorlet P, Solari PL, Sayen S, Guillon E, Sabater L, Faller P (2009) Deprotonation of the Asp1-Ala2 peptide bond induces modification of the dynamic copper(II) environment in the amyloid-beta peptide near physiological pH. Angew Chem Int Ed Engl 48:9522–9525

    PubMed  CAS  Google Scholar 

  • Ishida S, Lee J, Thiele DJ, Herskowitz I (2002) Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proc Natl Acad Sci USA 99:14298–14302

    PubMed  CAS  Google Scholar 

  • Ittner LM, Ke YD, Delerue F, Bi M, Gladbach A, van Eersel J, Wolfing H, Chieng BC, Christie MJ, Napier IA et al (2010) Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell 142:387–397

    PubMed  CAS  Google Scholar 

  • Iwase T, Nishimura M, Sugimura H, Igarashi H, Ozawa F, Shinmura K, Suzuki M, Tanaka M, Kino I (1996) Localization of Menkes gene expression in the mouse brain; its association with neurological manifestations in Menkes model mice. Acta Neuropathol 91:482–488

    PubMed  CAS  Google Scholar 

  • Jacobsen KT, Iverfeldt K (2009) Amyloid precursor protein and its homologues: a family of proteolysis-dependent receptors. Cell Mol Life Sci 66:2299–2318

    PubMed  CAS  Google Scholar 

  • Jiang D, Men L, Wang J, Zhang Y, Chickenyen S, Wang Y, Zhou F (2007) Redox reactions of copper complexes formed with different beta-amyloid peptides and their neuropathological [correction of neuropathalogical] relevance. Biochemistry 46:9270–9282

    PubMed  CAS  Google Scholar 

  • Johnstone EM, Chaney MO, Norris FH, Pascual R, Little SP (1991) Conservation of the sequence of the Alzheimer’s disease amyloid peptide in dog, polar bear and five other mammals by cross-species polymerase chain reaction analysis. Brain Res Mol Brain Res 10:299–305

    PubMed  CAS  Google Scholar 

  • Jomova K, Vondrakova D, Lawson M, Valko M (2010) Metals, oxidative stress and neurodegenerative disorders. Mol Cell Biochem 345:91–104

    PubMed  CAS  Google Scholar 

  • Kako K, Tsumori K, Ohmasa Y, Takahashi Y, Munekata E (2000) The expression of Cox17p in rodent tissues and cells. Eur J Biochem 267:6699–6707

    PubMed  CAS  Google Scholar 

  • Kaler SG (1998) Metabolic and molecular bases of Menkes disease and occipital horn syndrome. Pediatr Dev Pathol 1:85–98

    PubMed  CAS  Google Scholar 

  • Kaler SG (2011) ATP7A-related copper transport diseases-emerging concepts and future trends. Nat Rev Neurol 7:15–29

    PubMed  CAS  Google Scholar 

  • Kaler SG, Holmes CS, Goldstein DS (1998) Dopamine beta-hydroxylase deficiency associated with mutations in a copper transporter gene. Adv Pharmacol 42:66–68

    PubMed  CAS  Google Scholar 

  • Kamenetz F, Tomita T, Hsieh H, Seabrook G, Borchelt D, Iwatsubo T, Sisodia S, Malinow R (2003) APP processing and synaptic function. Neuron 37:925–937

    PubMed  CAS  Google Scholar 

  • Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH, Multhaup G, Beyreuther K, Muller-Hill B (1987) The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 325:733–736

    PubMed  CAS  Google Scholar 

  • Kardos J, Kovacs I, Hajos F, Kalman M, Simonyi M (1989) Nerve endings from rat brain tissue release copper upon depolarization. A possible role in regulating neuronal excitability. Neurosci Lett 103:139–144

    PubMed  CAS  Google Scholar 

  • Karr JW, Kaupp LJ, Szalai VA (2004) Amyloid-beta binds Cu2+ in a mononuclear metal ion binding site. J Am Chem Soc 126:13534–13538

    PubMed  CAS  Google Scholar 

  • Keller JN, Schmitt FA, Scheff SW, Ding Q, Chen Q, Butterfield DA, Markesbery WR (2005) Evidence of increased oxidative damage in subjects with mild cognitive impairment. Neurology 64:1152–1156

    PubMed  CAS  Google Scholar 

  • Kelner GS, Lee M, Clark ME, Maciejewski D, McGrath D, Rabizadeh S, Lyons T, Bredesen D, Jenner P, Maki RA (2000) The copper transport protein Atox1 promotes neuronal survival. J Biol Chem 275:580–584

    PubMed  CAS  Google Scholar 

  • Kessler H, Pajonk FG, Meisser P, Schneider-Axmann T, Hoffmann KH, Supprian T, Herrmann W, Obeid R, Multhaup G, Falkai P et al (2006) Cerebrospinal fluid diagnostic markers correlate with lower plasma copper and ceruloplasmin in patients with Alzheimer’s disease. J Neural Transm 113:1763–1769

    PubMed  CAS  Google Scholar 

  • Kessler H, Bayer TA, Bach D, Schneider-Axmann T, Supprian T, Herrmann W, Haber M, Multhaup G, Falkai P, Pajonk FG (2008a) Intake of copper has no effect on cognition in patients with mild Alzheimer’s disease: a pilot phase 2 clinical trial. J Neural Transm 115:1181–1187

    Google Scholar 

  • Kessler H, Pajonk FG, Bach D, Schneider-Axmann T, Falkai P, Herrmann W, Multhaup G, Wiltfang J, Schafer S, Wirths O et al (2008b) Effect of copper intake on CSF parameters in patients with mild Alzheimer’s disease: a pilot phase 2 clinical trial. J Neural Transm 115:1651–1659

    PubMed  CAS  Google Scholar 

  • Kim BE, Nevitt T, Thiele DJ (2008) Mechanisms for copper acquisition, distribution and regulation. Nat Chem Biol 4:176–185

    PubMed  CAS  Google Scholar 

  • Kitazawa M, Cheng D, Laferla FM (2009) Chronic copper exposure exacerbates both amyloid and tau pathology and selectively dysregulates cdk5 in a mouse model of AD. J Neurochem 108:1550–1560

    PubMed  CAS  Google Scholar 

  • Klomp AE, Tops BB, Van Denberg IE, Berger R, Klomp LW (2002) Biochemical characterization and subcellular localization of human copper transporter 1 (hCTR1). Biochem J 364:497–505

    PubMed  CAS  Google Scholar 

  • Kong GK, Galatis D, Barnham KJ, Polekhina G, Adams JJ, Masters CL, Cappai R, Parker MW, McKinstry WJ (2005) Crystallization and preliminary crystallographic studies of the copper-binding domain of the amyloid precursor protein of Alzheimer’s disease. Acta Crystallograph Sect F Struct Biol Cryst Commun 61:93–95

    Google Scholar 

  • Kong GK, Adams JJ, Cappai R, Parker MW (2007a) Structure of Alzheimer’s disease amyloid precursor protein copper-binding domain at atomic resolution. Acta Crystallogr Sect F Struct Biol Cryst Commun 63:819–824

    PubMed  Google Scholar 

  • Kong GK, Adams JJ, Harris HH, Boas JF, Curtain CC, Galatis D, Masters CL, Barnham KJ, McKinstry WJ, Cappai R et al (2007b) Structural studies of the Alzheimer’s amyloid precursor protein copper-binding domain reveal how it binds copper ions. J Mol Biol 367:148–161

    PubMed  CAS  Google Scholar 

  • Kong GK, Miles LA, Crespi GA, Morton CJ, Ng HL, Barnham KJ, McKinstry WJ, Cappai R, Parker MW (2008) Copper binding to the Alzheimer’s disease amyloid precursor protein. Eur Biophys J 37:269–279

    PubMed  CAS  Google Scholar 

  • Koppaka V, Axelsen PH (2000) Accelerated accumulation of amyloid beta proteins on oxidatively damaged lipid membranes. Biochemistry 39:10011–10016

    PubMed  CAS  Google Scholar 

  • Kosik KS, Orecchio LD, Bakalis S, Neve RL (1989) Developmentally regulated expression of specific tau sequences. Neuron 2:1389–1397

    PubMed  CAS  Google Scholar 

  • Kuo YM, Kokjohn TA, Beach TG, Sue LI, Brune D, Lopez JC, Kalback WM, Abramowski D, Sturchler-Pierrat C, Staufenbiel M et al (2001a) Comparative analysis of amyloid-beta chemical structure and amyloid plaque morphology of transgenic mouse and Alzheimer’s disease brains. J Biol Chem 276:12991–12998

    PubMed  CAS  Google Scholar 

  • Kuo YM, Zhou B, Cosco D, Gitschier J (2001b) The copper transporter CTR1 provides an essential function in mammalian embryonic development. Proc Natl Acad Sci USA 98:6836–6841

    PubMed  CAS  Google Scholar 

  • Kuo YM, Gybina AA, Pyatskowit JW, Gitschier J, Prohaska JR (2006) Copper transport protein (Ctr1) levels in mice are tissue specific and dependent on copper status. J Nutr 136:21–26

    PubMed  CAS  Google Scholar 

  • Lannfelt L, Blennow K, Zetterberg H, Batsman S, Ames D, Harrison J, Masters CL, Targum S, Bush AI, Murdoch R et al (2008) Safety, efficacy, and biomarker findings of PBT2 in targeting Abeta as a modifying therapy for Alzheimer’s disease: a phase IIa, double-blind, randomised, placebo-controlled trial. Lancet Neurol 7:779–786

    PubMed  CAS  Google Scholar 

  • Leary SC, Kaufman BA, Pellecchia G, Guercin GH, Mattman A, Jaksch M, Shoubridge EA (2004) Human SCO1 and SCO2 have independent, cooperative functions in copper delivery to cytochrome c oxidase. Hum Mol Genet 13:1839–1848

    PubMed  CAS  Google Scholar 

  • Lee SH, Lancey R, Montaser A, Madani N, Linder MC (1993) Ceruloplasmin and copper transport during the latter part of gestation in the rat. Proc Soc Exp Biol Med 203:428–439

    PubMed  CAS  Google Scholar 

  • Lee J, Prohaska JR, Thiele DJ (2001) Essential role for mammalian copper transporter Ctr1 in copper homeostasis and embryonic development. Proc Natl Acad Sci USA 98:6842–6847

    PubMed  CAS  Google Scholar 

  • Lee J, Pena MM, Nose Y, Thiele DJ (2002a) Biochemical characterization of the human copper transporter Ctr1. J Biol Chem 277:4380–4387

    PubMed  CAS  Google Scholar 

  • Lee J, Petris MJ, Thiele DJ (2002b) Characterization of mouse embryonic cells deficient in the ctr1 high affinity copper transporter. Identification of a Ctr1-independent copper transport system. J Biol Chem 277:40253–40259

    PubMed  CAS  Google Scholar 

  • Lentner C (1986) Geigy scientific tables. Medical Education Division, Ciba-Geigy Corp, Basel

    Google Scholar 

  • Leskovjan AC, Lanzirotti A, Miller LM (2009) Amyloid plaques in PSAPP mice bind less metal than plaques in human Alzheimer’s disease. Neuroimage 47:1215–1220

    PubMed  Google Scholar 

  • Lesné S, Kotilinek L (2005) Amyloid plaques and amyloid-beta oligomers: an ongoing debate. J Neurosci 25:9319–9320

    PubMed  Google Scholar 

  • Lesné S, Ali C, Gabriel C, Croci N, MacKenzie ET, Glabe CG, Plotkine M, Marchand-Verrecchia C, Vivien D, Buisson A (2005) NMDA receptor activation inhibits alpha-secretase and promotes neuronal amyloid-beta production. J Neurosci 25:9367–9377

    PubMed  Google Scholar 

  • Lichtenthaler SF, Haass C, Steiner H (2011) Regulated intramembrane proteolysis-lessons from amyloid precursor protein processing. J Neurochem 117:779–796

    PubMed  CAS  Google Scholar 

  • Lin SJ, Culotta VC (1995) The ATX1 gene of Saccharomyces cerevisiae encodes a small metal homeostasis factor that protects cells against reactive oxygen toxicity. Proc Natl Acad Sci USA 92:3784–3788

    PubMed  CAS  Google Scholar 

  • Lin H, Bhatia R, Lal R (2001) Amyloid beta protein forms ion channels: implications for Alzheimer’s disease pathophysiology. FASEB J 15:2433–2444

    PubMed  CAS  Google Scholar 

  • Lin R, Chen X, Li W, Han Y, Liu P, Pi R (2008) Exposure to metal ions regulates mRNA levels of APP and BACE1 in PC12 cells: blockage by curcumin. Neurosci Lett 440:344–347

    PubMed  CAS  Google Scholar 

  • Linder MC, Hazegh-Azam M (1996) Copper biochemistry and molecular biology. Am J Clin Nutr 63:797S–811S

    PubMed  CAS  Google Scholar 

  • Ling Y, Morgan K, Kalsheker N (2003) Amyloid precursor protein (APP) and the biology of proteolytic processing: relevance to Alzheimer’s disease. Int J Biochem Cell Biol 35:1505–1535

    PubMed  CAS  Google Scholar 

  • Liu N, Lo LS, Askary SH, Jones L, Kidane TZ, Trang T, Nguyen M, Goforth J, Chu YH, Vivas E et al (2007) Transcuprein is a macroglobulin regulated by copper and iron availability. J Nutr Biochem 18:597–608

    PubMed  Google Scholar 

  • Liu L, Komatsu H, Murray IV, Axelsen PH (2008) Promotion of amyloid beta protein misfolding and fibrillogenesis by a lipid oxidation product. J Mol Biol 377:1236–1250

    PubMed  CAS  Google Scholar 

  • Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR (1998) Copper, iron and zinc in Alzheimer’s disease senile plaques. J Neurol Sci 158:47–52

    PubMed  CAS  Google Scholar 

  • Lu J, Zheng YL, Wu DM, Sun DX, Shan Q, Fan SH (2006) Trace amounts of copper induce neurotoxicity in the cholesterol-fed mice through apoptosis. FEBS Lett 580:6730–6740

    PubMed  CAS  Google Scholar 

  • Lu J, Wu DM, Zheng YL, Sun DX, Hu B, Shan Q, Zhang ZF, Fan SH (2009) Trace amounts of copper exacerbate beta amyloid-induced neurotoxicity in the cholesterol-fed mice through TNF-mediated inflammatory pathway. Brain Behav Immun 23:193–203

    PubMed  CAS  Google Scholar 

  • Lutsenko S, Bhattacharjee A, Hubbard AL (2010) Copper handling machinery of the brain. Metallomics 2:596–608

    PubMed  CAS  Google Scholar 

  • Ma QF, Li YM, Du JT, Kanazawa K, Nemoto T, Nakanishi H, Zhao YF (2005) Binding of copper (II) ion to an Alzheimer’s tau peptide as revealed by MALDI-TOF MS, CD, and NMR. Biopolymers 79:74–85

    PubMed  CAS  Google Scholar 

  • Ma Q, Li Y, Du J, Liu H, Kanazawa K, Nemoto T, Nakanishi H, Zhao Y (2006) Copper binding properties of a tau peptide associated with Alzheimer’s disease studied by CD, NMR, and MALDI-TOF MS. Peptides 27:841–849

    PubMed  CAS  Google Scholar 

  • Magaki S, Raghavan R, Mueller C, Oberg KC, Vinters HV, Kirsch WM (2007) Iron, copper, and iron regulatory protein 2 in Alzheimer’s disease and related dementias. Neurosci Lett 418:72–76

    PubMed  CAS  Google Scholar 

  • Maler JM, Klafki HW, Paul S, Spitzer P, Groemer TW, Henkel AW, Esselmann H, Lewczuk P, Kornhuber J, Wiltfang J (2007) Urea-based two-dimensional electrophoresis of beta-amyloid peptides in human plasma: evidence for novel Abeta species. Proteomics 7:3815–3820

    PubMed  CAS  Google Scholar 

  • Markesbery WR, Kryscio RJ, Lovell MA, Morrow JD (2005) Lipid peroxidation is an early event in the brain in amnestic mild cognitive impairment. Ann Neurol 58:730–735

    PubMed  CAS  Google Scholar 

  • Martinaud O, Laquerriere A, Guyant-Marechal L, Ahtoy P, Vera P, Sergeant N, Camuzat A, Bourgeois P, Hauw JJ, Campion D et al (2005) Frontotemporal dementia, motor neuron disease and tauopathy: clinical and neuropathological study in a family. Acta Neuropathol 110:84–92

    PubMed  CAS  Google Scholar 

  • Masters CL, Simms G, Weinman NA, Multhaup G, McDonald BL, Beyreuther K (1985) Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci USA 82:4245–4249

    PubMed  CAS  Google Scholar 

  • Materia S, Cater MA, Klomp LW, Mercer JF, La Fontaine S (2011) Clusterin (apolipoprotein J), a molecular chaperone that facilitates degradation of the copper-ATPases ATP7A and ATP7B. J Biol Chem 286:10073–10083

    PubMed  CAS  Google Scholar 

  • Matsuzaki S, Manabe T, Katayama T, Nishikawa A, Yanagita T, Okuda H, Yasuda Y, Miyata S, Meshitsuka S, Tohyama M (2004) Metals accelerate production of the aberrant splicing isoform of the presenilin-2. J Neurochem 88:1345–1351

    PubMed  CAS  Google Scholar 

  • Mattson MP (2004) Pathways towards and away from Alzheimer’s disease. Nature 430:631–639

    PubMed  CAS  Google Scholar 

  • Maynard CJ, Cappai R, Volitakis I, Cherny RA, White AR, Beyreuther K, Masters CL, Bush AI, Li QX (2002) Overexpression of Alzheimer’s disease amyloid-beta opposes the age-dependent elevations of brain copper and iron. J Biol Chem 277:44670–44676

    PubMed  CAS  Google Scholar 

  • Maynard CJ, Cappai R, Volitakis I, Cherny RA, Masters CL, Li QX, Bush AI (2006) Gender and genetic background effects on brain metal levels in APP transgenic and normal mice: implications for Alzheimer beta-amyloid pathology. J Inorg Biochem 100:952–962

    PubMed  CAS  Google Scholar 

  • McColl G, Roberts BR, Gunn AP, Perez KA, Tew DJ, Masters CL, Barnham KJ, Cherny RA, Bush AI (2009) The Caenorhabditis elegans Aβ1-42 model of Alzheimer disease predominantly expresses Aβ3-42. J Biol Chem 284:22697–22702

    PubMed  CAS  Google Scholar 

  • McCord JM, Fridovich I (1969) Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055

    PubMed  CAS  Google Scholar 

  • Meloni G, Sonois V, Delaine T, Guilloreau L, Gillet A, Teissie J, Faller P, Vasak M (2008) Metal swap between Zn7-metallothionein-3 and amyloid-beta-Cu protects against amyloid-beta toxicity. Nat Chem Biol 4:366–372

    PubMed  CAS  Google Scholar 

  • Mercer JF (1998) Menkes syndrome and animal models. Am J Clin Nutr 67:1022S–1028S

    PubMed  CAS  Google Scholar 

  • Mercer JF, Livingston J, Hall B, Paynter JA, Begy C, Chandrasekharappa S, Lockhart P, Grimes A, Bhave M, Siemieniak D et al (1993) Isolation of a partial candidate gene for Menkes disease by positional cloning. Nat Genet 3:20–25

    PubMed  CAS  Google Scholar 

  • Metodiewa D (1998) Molecular mechanisms of cellular injury produced by neurotoxic amino acids that generate reactive oxygen species. Amino Acids 14:181–187

    PubMed  CAS  Google Scholar 

  • Miller LM, Wang Q, Telivala TP, Smith RJ, Lanzirotti A, Miklossy J (2006) Synchrotron-based infrared and X-ray imaging shows focalized accumulation of Cu and Zn co-localized with beta-amyloid deposits in Alzheimer’s disease. J Struct Biol 155:30–37

    PubMed  CAS  Google Scholar 

  • Miura T, Suzuki K, Kohata N, Takeuchi H (2000) Metal binding modes of Alzheimer’s amyloid beta-peptide in insoluble aggregates and soluble complexes. Biochemistry 39:7024–7031

    PubMed  CAS  Google Scholar 

  • Møller LB, Bukrinsky JT, Molgaard A, Paulsen M, Lund C, Tümer Z, Larsen S, Horn N (2005) Identification and analysis of 21 novel disease-causing amino acid substitutions in the conserved part of ATP7A. Hum Mutat 26:84–93

    PubMed  Google Scholar 

  • Morris M, Maeda S, Vossel K, Mucke L (2011) The many faces of tau. Neuron 70:410–426

    PubMed  CAS  Google Scholar 

  • Munch G, Thome J, Foley P, Schinzel R, Riederer P (1997) Advanced glycation endproducts in ageing and Alzheimer’s disease. Brain Res Brain Res Rev 23:134–143

    PubMed  CAS  Google Scholar 

  • Murray IV, Sindoni ME, Axelsen PH (2005) Promotion of oxidative lipid membrane damage by amyloid beta proteins. Biochemistry 44:12606–12613

    PubMed  CAS  Google Scholar 

  • Murray IV, Liu L, Komatsu H, Uryu K, Xiao G, Lawson JA, Axelsen PH (2007) Membrane-mediated amyloidogenesis and the promotion of oxidative lipid damage by amyloid beta proteins. J Biol Chem 282:9335–9345

    PubMed  CAS  Google Scholar 

  • Naeve GS, Vana AM, Eggold JR, Kelner GS, Maki R, Desouza EB, Foster AC (1999) Expression profile of the copper homeostasis gene, rAtox1, in the rat brain. Neuroscience 93:1179–1187

    PubMed  CAS  Google Scholar 

  • Naj AC, Jun G, Beecham GW, Wang LS, Vardarajan BN, Buros J, Gallins PJ, Buxbaum JD, Jarvik GP, Crane PK et al (2011) Common variants at MS4A4/MS4A6E, CD2AP, CD33 and EPHA1 are associated with late-onset Alzheimer’s disease. Nat Genet 43:436–441

    PubMed  CAS  Google Scholar 

  • Nelson TJ, Alkon DL (2005) Oxidation of cholesterol by amyloid precursor protein and beta-amyloid peptide. J Biol Chem 280:7377–7387

    PubMed  CAS  Google Scholar 

  • Neumann PZ, Sass-Kortsak A (1967) The state of copper in human serum: evidence for an amino acid-bound fraction. J Clin Invest 46:646–658

    PubMed  CAS  Google Scholar 

  • Niciu MJ, Ma XM, El Meskini R, Ronnett GV, Mains RE, Eipper BA (2006) Developmental changes in the expression of ATP7A during a critical period in postnatal neurodevelopment. Neuroscience 139:947–964

    PubMed  CAS  Google Scholar 

  • Ohgami RS, Campagna DR, McDonald A, Fleming MD (2006) The Steap proteins are metalloreductases. Blood 108:1388–1394

    PubMed  CAS  Google Scholar 

  • Okado-Matsumoto A, Fridovich I (2001) Subcellular distribution of superoxide dismutases (SOD) in rat liver: Cu, Zn-SOD in mitochondria. J Biol Chem 276:38388–38393

    PubMed  CAS  Google Scholar 

  • Opazo C, Huang X, Cherny RA, Moir RD, Roher AE, White AR, Cappai R, Masters CL, Tanzi RE, Inestrosa NC et al (2002) Metalloenzyme-like activity of Alzheimer’s disease beta-amyloid. Cu-dependent catalytic conversion of dopamine, cholesterol, and biological reducing agents to neurotoxic H(2)O(2). J Biol Chem 277:40302–40308

    PubMed  CAS  Google Scholar 

  • Opazo C, Barria MI, Ruiz FH, Inestrosa NC (2003) Copper reduction by copper binding proteins and its relation to neurodegenerative diseases. Biometals 16:91–98

    PubMed  CAS  Google Scholar 

  • Pajonk FG, Kessler H, Supprian T, Hamzei P, Bach D, Schweickhardt J, Herrmann W, Obeid R, Simons A, Falkai P et al (2005) Cognitive decline correlates with low plasma concentrations of copper in patients with mild to moderate Alzheimer’s disease. J Alzheimers Dis 8:23–27

    PubMed  CAS  Google Scholar 

  • Palmert MR, Golde TE, Cohen ML, Kovacs DM, Tanzi RE, Gusella JF, Usiak MF, Younkin LH, Younkin SG (1988) Amyloid protein precursor messenger RNAs: differential expression in Alzheimer’s disease. Science 241:1080–1084

    PubMed  CAS  Google Scholar 

  • Petris MJ, Mercer JFB, Culvenor JG, Lockhart P, Gleeson PA, Camakaris J (1996) Ligand-regulated transport of the Menkes copper P-type ATPase efflux pump from the Golgi apparatus to the plasma membrane: a novel mechanism of regulated trafficking. EMBO J 15:6084–6095

    PubMed  CAS  Google Scholar 

  • Petris MJ, Strausak D, Mercer JF (2000) The Menkes copper transporter is required for the activation of tyrosinase. Hum Mol Genet 9:2845–2851

    PubMed  CAS  Google Scholar 

  • Petrukhin K, Fischer SG, Pirastu M, Tanzi RE, Chernov I, Devoto M, Brzustowicz LM, Cayanis E, Vitale E, Russo JJ et al (1993) Mapping, cloning and genetic characterization of the region containing the Wilson disease gene. Nat Genet 5:338–343

    PubMed  CAS  Google Scholar 

  • Phinney AL, Drisaldi B, Schmidt SD, Lugowski S, Coronado V, Liang Y, Horne P, Yang J, Sekoulidis J, Coomaraswamy J et al (2003) In vivo reduction of amyloid-beta by a mutant copper transporter. Proc Natl Acad Sci USA 100:14193–14198

    PubMed  CAS  Google Scholar 

  • Piccini A, Russo C, Gliozzi A, Relini A, Vitali A, Borghi R, Giliberto L, Armirotti A, D’Arrigo C, Bachi A et al (2005) Beta-amyloid is different in normal aging and in Alzheimer disease. J Biol Chem 280:34186–34192

    PubMed  CAS  Google Scholar 

  • Pratico D (2008) Oxidative stress hypothesis in Alzheimer’s disease: a reappraisal. Trends Pharmacol Sci 29:609–615

    PubMed  CAS  Google Scholar 

  • Pufahl RA, Singer CP, Peariso KL, Lin SJ, Schmidt PJ, Fahrni CJ, Culotta VC, Penner-Hahn JE, O’Halloran TV (1997) Metal ion chaperone function of the soluble Cu(I) receptor Atx1. Science 278:853–856

    PubMed  CAS  Google Scholar 

  • Puglielli L, Friedlich AL, Setchell KD, Nagano S, Opazo C, Cherny RA, Barnham KJ, Wade JD, Melov S, Kovacs DM et al (2005) Alzheimer disease beta-amyloid activity mimics cholesterol oxidase. J Clin Invest 115:2556–2563

    PubMed  CAS  Google Scholar 

  • Puzzo D, Privitera L, Fa M, Staniszewski A, Hashimoto G, Aziz F, Sakurai M, Ribe EM, Troy CM, Mercken M et al (2011) Endogenous amyloid-beta is necessary for hippocampal synaptic plasticity and memory. Ann Neurol 69:819–830

    PubMed  CAS  Google Scholar 

  • Qian Y, Tiffany-Castiglioni E, Welsh J, Harris ED (1998) Copper efflux from murine microvascular cells requires expression of the menkes disease Cu-ATPase. J Nutr 128:1276–1282

    PubMed  CAS  Google Scholar 

  • Que EL, Domaille DW, Chang CJ (2008) Metals in neurobiology: probing their chemistry and biology with molecular imaging. Chem Rev 108:1517–1549

    PubMed  CAS  Google Scholar 

  • Rae TD, Schmidt PJ, Pufahl RA, Culotta VC, O’Halloran TV (1999) Undetectable intracellular free copper: the requirement of a copper chaperone for superoxide dismutase. Science 284:805–808

    PubMed  CAS  Google Scholar 

  • Rajan KS, Colburn RW, Davis JM (1976) Distribution of metal ions in the subcellular fractions of several rat brain areas. Life Sci 18:423–431

    PubMed  CAS  Google Scholar 

  • Regland B, Lehmann W, Abedini I, Blennow K, Jonsson M, Karlsson I, Sjogren M, Wallin A, Xilinas M, Gottfries CG (2001) Treatment of Alzheimer’s disease with clioquinol. Dement Geriatr Cogn Disord 12:408–414

    PubMed  CAS  Google Scholar 

  • Religa D, Strozyk D, Cherny RA, Volitakis I, Haroutunian V, Winblad B, Naslund J, Bush AI (2006) Elevated cortical zinc in Alzheimer disease. Neurology 67:69–75

    PubMed  CAS  Google Scholar 

  • Ritchie CW, Bush AI, Mackinnon A, Macfarlane S, Mastwyk M, MacGregor L, Kiers L, Cherny R, Li QX, Tammer A et al (2003) Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Abeta amyloid deposition and toxicity in Alzheimer disease: a pilot phase 2 clinical trial. Arch Neurol 60:1685–1691

    PubMed  Google Scholar 

  • Roelofsen H, Wolters H, Van Luyn MJ, Miura N, Kuipers F, Vonk RJ (2000) Copper-induced apical trafficking of ATP7B in polarized hepatoma cells provides a mechanism for biliary copper excretion. Gastroenterology 119:782–793

    PubMed  CAS  Google Scholar 

  • Rosenzweig AC (2001) Copper delivery by metallochaperone proteins. Acc Chem Res 34:119–128

    PubMed  CAS  Google Scholar 

  • Ruiz FH, Gonzalez M, Bodini M, Opazo C, Inestrosa NC (1999) Cysteine 144 is a key residue in the copper reduction by the beta-amyloid precursor protein. J Neurochem 73:1288–1292

    PubMed  CAS  Google Scholar 

  • Saido TC, Iwatsubo T, Mann DM, Shimada H, Ihara Y, Kawashima S (1995) Dominant and differential deposition of distinct beta-amyloid peptide species, Abeta N3(pE), in senile plaques. Neuron 14:457–466

    PubMed  CAS  Google Scholar 

  • Saido TC, Yamao-Harigaya W, Iwatsubo T, Kawashima S (1996) Amino- and carboxyl-terminal heterogeneity of beta-amyloid peptides deposited in human brain. Neurosci Lett 215:173–176

    PubMed  CAS  Google Scholar 

  • Saito T, Suemoto T, Brouwers N, Sleegers K, Funamoto S, Mihira N, Matsuba Y, Yamada K, Nilsson P, Takano J et al (2011) Potent amyloidogenicity and pathogenicity of Abeta43. Nat Neurosci 14:1023–1032

    PubMed  CAS  Google Scholar 

  • Sarell CJ, Syme CD, Rigby SE, Viles JH (2009) Copper(II) binding to amyloid-beta fibrils of Alzheimer’s disease reveals a picomolar affinity: stoichiometry and coordination geometry are independent of Abeta oligomeric form. Biochemistry 48:4388–4402

    PubMed  CAS  Google Scholar 

  • Sayre LM, Perry G, Harris PL, Liu Y, Schubert KA, Smith MA (2000) In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer’s disease: a central role for bound transition metals. J Neurochem 74:270–279

    PubMed  CAS  Google Scholar 

  • Sayre LM, Perry G, Smith MA (2008) Oxidative stress and neurotoxicity. Chem Res Toxicol 21:172–188

    PubMed  Google Scholar 

  • Schaefer M, Roelofsen H, Wolters H, Hofmann WJ, Muller M, Kuipers F, Stremmel W, Vonk RJ (1999) Localization of the Wilson’s disease protein in human liver. Gastroenterology 117:1380–1385

    PubMed  CAS  Google Scholar 

  • Schlief ML, Craig AM, Gitlin JD (2005) NMDA receptor activation mediates copper homeostasis in hippocampal neurons. J Neurosci 25:239–246

    PubMed  CAS  Google Scholar 

  • Schlief ML, West T, Craig AM, Holtzman DM, Gitlin JD (2006) Role of the Menkes copper-transporting ATPase in NMDA receptor-mediated neuronal toxicity. Proc Natl Acad Sci USA 103:14919–14924

    PubMed  CAS  Google Scholar 

  • Schneider A, Rajendran L, Honsho M, Gralle M, Donnert G, Wouters F, Hell SW, Simons M (2008) Flotillin-dependent clustering of the amyloid precursor protein regulates its endocytosis and amyloidogenic processing in neurons. J Neurosci 28:2874–2882

    PubMed  CAS  Google Scholar 

  • Selkoe DJ, Podlisny MB, Joachim CL, Vickers EA, Lee G, Fritz LC, Oltersdorf T (1988) Beta-amyloid precursor protein of Alzheimer disease occurs as 110- to 135-kiloDalton membrane-associated proteins in neural and nonneural tissues. Proc Natl Acad Sci USA 85:7341–7345

    PubMed  CAS  Google Scholar 

  • Sergeant N, Bombois S, Ghestem A, Drobecq H, Kostanjevecki V, Missiaen C, Wattez A, David JP, Vanmechelen E, Sergheraert C et al (2003) Truncated beta-amyloid peptide species in pre-clinical Alzheimer’s disease as new targets for the vaccination approach. J Neurochem 85:1581–1591

    PubMed  CAS  Google Scholar 

  • Seubert P, Vigo-Pelfrey C, Esch F, Lee M, Dovey H, Davis D, Sinha S, Schlossmacher M, Whaley J, Swindlehurst C et al (1992) Isolation and quantification of soluble Alzheimer’s beta-peptide from biological fluids. Nature 359:325–327

    PubMed  CAS  Google Scholar 

  • Shankar GM, Bloodgood BL, Townsend M, Walsh DM, Selkoe DJ, Sabatini BL (2007) Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J Neurosci 27:2866–2875

    PubMed  CAS  Google Scholar 

  • Shi X, Stoj C, Romeo A, Kosman DJ, Zhu Z (2003) Fre1p Cu2+ reduction and Fet3p Cu1+ oxidation modulate copper toxicity in Saccharomyces cerevisiae. J Biol Chem 278:50309–50315

    PubMed  CAS  Google Scholar 

  • Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387:569–572

    PubMed  CAS  Google Scholar 

  • Simons A, Ruppert T, Schmidt C, Schlicksupp A, Pipkorn R, Reed J, Masters CL, White AR, Cappai R, Beyreuther K et al (2002) Evidence for a copper-binding superfamily of the amyloid precursor protein. Biochemistry 41:9310–9320

    PubMed  CAS  Google Scholar 

  • Smith CD, Carney JM, Starke-Reed PE, Oliver CN, Stadtman ER, Floyd RA, Markesbery WR (1991) Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proc Natl Acad Sci USA 88:10540–10543

    PubMed  CAS  Google Scholar 

  • Smith DP, Smith DG, Curtain CC, Boas JF, Pilbrow JR, Ciccotosto GD, Lau TL, Tew DJ, Perez K, Wade JD et al (2006) Copper-mediated amyloid-beta toxicity is associated with an intermolecular histidine bridge. J Biol Chem 281:15145–15154

    PubMed  CAS  Google Scholar 

  • Smith DG, Cappai R, Barnham KJ (2007a) The redox chemistry of the Alzheimer’s disease amyloid beta peptide. Biochim Biophys Acta 1768:1976–1990

    PubMed  CAS  Google Scholar 

  • Smith DP, Ciccotosto GD, Tew DJ, Fodero-Tavoletti MT, Johanssen T, Masters CL, Barnham KJ, Cappai R (2007b) Concentration dependent Cu2+ induced aggregation and dityrosine formation of the Alzheimer’s disease amyloid-beta peptide. Biochemistry 46:2881–2891

    PubMed  CAS  Google Scholar 

  • Snyder EM, Nong Y, Almeida CG, Paul S, Moran T, Choi EY, Nairn AC, Salter MW, Lombroso PJ, Gouras GK et al (2005) Regulation of NMDA receptor trafficking by amyloid-beta. Nat Neurosci 8:1051–1058

    PubMed  CAS  Google Scholar 

  • Song IS, Savaraj N, Siddik ZH, Liu P, Wei Y, Wu CJ, Kuo MT (2004) Role of human copper transporter Ctr1 in the transport of platinum-based antitumor agents in cisplatin-sensitive and cisplatin-resistant cells. Mol Cancer Ther 3:1543–1549

    PubMed  CAS  Google Scholar 

  • Song IS, Chen HH, Aiba I, Hossain A, Liang ZD, Klomp LW, Kuo MT (2008) Transcription factor Sp1 plays an important role in the regulation of copper homeostasis in mammalian cells. Mol Pharmacol 74:705–713

    PubMed  CAS  Google Scholar 

  • Soragni A, Zambelli B, Mukrasch MD, Biernat J, Jeganathan S, Griesinger C, Ciurli S, Mandelkow E, Zweckstetter M (2008) Structural characterization of binding of Cu(II) to tau protein. Biochemistry 47:10841–10851

    PubMed  CAS  Google Scholar 

  • Sparks DL (2004) Cholesterol, copper, and accumulation of thioflavine S-reactive Alzheimer’s-like amyloid beta in rabbit brain. J Mol Neurosci 24:97–104

    CAS  Google Scholar 

  • Sparks DL, Schreurs BG (2003) Trace amounts of copper in water induce beta-amyloid plaques and learning deficits in a rabbit model of Alzheimer’s disease. Proc Natl Acad Sci USA 100:11065–11069

    PubMed  CAS  Google Scholar 

  • Sparks DL, Friedland R, Petanceska S, Schreurs BG, Shi J, Perry G, Smith MA, Sharma A, Derosa S, Ziolkowski C et al (2006) Trace copper levels in the drinking water, but not zinc or aluminum influence CNS Alzheimer-like pathology. J Nutr Health Aging 10:247–254

    PubMed  CAS  Google Scholar 

  • Sparks DL, Ziolkowski C, Lawmaster T, Martin T (2011) Influence of water quality on cholesterol-induced tau pathology: preliminary data. Int J Alzheimers Dis 2011:987023

    PubMed  Google Scholar 

  • Spires-Jones TL, Stoothoff WH, de Calignon A, Jones PB, Hyman BT (2009) Tau pathophysiology in neurodegeneration: a tangled issue. Trends Neurosci 32:150–159

    PubMed  CAS  Google Scholar 

  • Squitti R, Lupoi D, Pasqualetti P, Dal Forno G, Vernieri F, Chiovenda P, Rossi L, Cortesi M, Cassetta E, Rossini PM (2002) Elevation of serum copper levels in Alzheimer’s disease. Neurology 59:1153–1161

    PubMed  CAS  Google Scholar 

  • Squitti R, Pasqualetti P, Cassetta E, Dal Forno G, Cesaretti S, Pedace F, Finazzi-Agro A, Rossini PM (2003) Elevation of serum copper levels discriminates Alzheimer’s disease from vascular dementia. Neurology 60:2013–2014

    PubMed  CAS  Google Scholar 

  • Squitti R, Pasqualetti P, Dal Forno G, Moffa F, Cassetta E, Lupoi D, Vernieri F, Rossi L, Baldassini M, Rossini PM (2005) Excess of serum copper not related to ceruloplasmin in Alzheimer disease. Neurology 64:1040–1046

    PubMed  CAS  Google Scholar 

  • Squitti R, Barbati G, Rossi L, Ventriglia M, Dal Forno G, Cesaretti S, Moffa F, Caridi I, Cassetta E, Pasqualetti P et al (2006) Excess of nonceruloplasmin serum copper in AD correlates with MMSE, CSF [beta]-amyloid, and h-tau. Neurology 67:76–82

    PubMed  CAS  Google Scholar 

  • Squitti R, Quattrocchi CC, Forno GD, Antuono P, Wekstein DR, Capo CR, Salustri C, Rossini PM (2007) Ceruloplasmin (2-D PAGE) pattern and copper content in serum and brain of Alzheimer disease patients. Biomark Insights 1:205–213

    PubMed  Google Scholar 

  • Srinivasan C, Posewitz MC, George GN, Winge DR (1998) Characterization of the copper chaperone Cox17 of Saccharomyces cerevisiae. Biochemistry 37:7572–7577

    PubMed  CAS  Google Scholar 

  • Stamer K, Vogel R, Thies E, Mandelkow E, Mandelkow EM (2002) Tau blocks traffic of organelles, neurofilaments, and APP vesicles in neurons and enhances oxidative stress. J Cell Biol 156:1051–1063

    PubMed  CAS  Google Scholar 

  • Steinebach OM, Wolterbeek HT (1994) Role of cytosolic copper, metallothionein and glutathione in copper toxicity in rat hepatoma tissue culture cells. Toxicology 92:75–90

    PubMed  CAS  Google Scholar 

  • Steveson TC, Ciccotosto GD, Ma XM, Mueller GP, Mains RE, Eipper BA (2003) Menkes protein contributes to the function of peptidylglycine alpha-amidating monooxygenase. Endocrinology 144:188–200

    PubMed  CAS  Google Scholar 

  • Strozyk D, Launer LJ, Adlard PA, Cherny RA, Tsatsanis A, Volitakis I, Blennow K, Petrovitch H, White LR, Bush AI (2009) Zinc and copper modulate Alzheimer Abeta levels in human cerebrospinal fluid. Neurobiol Aging 30:1069–1077

    PubMed  CAS  Google Scholar 

  • Sturtz LA, Diekert K, Jensen LT, Lill R, Culotta VC (2001) A fraction of yeast Cu, Zn-superoxide dismutase and its metallochaperone, CCS, localize to the intermembrane space of mitochondria. A physiological role for SOD1 in guarding against mitochondrial oxidative damage. J Biol Chem 276:38084–38089

    PubMed  CAS  Google Scholar 

  • Su XY, Wu WH, Huang ZP, Hu J, Lei P, Yu CH, Zhao YF, Li YM (2007) Hydrogen peroxide can be generated by tau in the presence of Cu(II). Biochem Biophys Res Commun 358:661–665

    PubMed  CAS  Google Scholar 

  • Suazo M, Hodar C, Morgan C, Cerpa W, Cambiazo V, Inestrosa NC, Gonzalez M (2009) Overexpression of amyloid precursor protein increases copper content in HEK293 cells. Biochem Biophys Res Commun 382:740–744

    PubMed  CAS  Google Scholar 

  • Syme CD, Nadal RC, Rigby SE, Viles JH (2004) Copper binding to the amyloid-beta (Abeta) peptide associated with Alzheimer’s disease: folding, coordination geometry, pH dependence, stoichiometry, and affinity of Abeta-(1–28): insights from a range of complementary spectroscopic techniques. J Biol Chem 279:18169–18177

    PubMed  CAS  Google Scholar 

  • Takahashi Y, Kako K, Kashiwabara S, Takehara A, Inada Y, Arai H, Nakada K, Kodama H, Hayashi J, Baba T et al (2002) Mammalian copper chaperone Cox17p has an essential role in activation of cytochrome C oxidase and embryonic development. Mol Cell Biol 22:7614–7621

    PubMed  CAS  Google Scholar 

  • Tamboli IY (2008) Role of membrane lipids in regulation of Alzheimer’s disease associated proteins and vice-a-versa. Department of Neurology, University of Bonn, Bonn, Germany, p 137

    Google Scholar 

  • Tanzi RE, Gusella JF, Watkins PC, Bruns GA, St George-Hyslop P, Van Keuren ML, Patterson D, Pagan S, Kurnit DM, Neve RL (1987) Amyloid beta protein gene: cDNA, mRNA distribution, and genetic linkage near the Alzheimer locus. Science 235:880–884

    PubMed  CAS  Google Scholar 

  • Tanzi RE, Petrukhin K, Chernov I, Pellequer JL, Wasco W, Ross B, Romano DM, Parano E, Pavone L, Brzustowicz LM, Devoto M, Peppercorn J, Bush AI, Sternlieb I, Pirastu M, Gusella JF, Evgrafov O, Penchaszadeh GK, Honig B, Edelman IS, Soares MB, Scheinberg IH, Gilliam TC (1993) The Wilson disease gene is a copper transporting ATPase with homology to the Menkes disease gene. Nat Genet 5:344–350

    PubMed  CAS  Google Scholar 

  • Thambisetty M, Simmons A, Velayudhan L, Hye A, Campbell J, Zhang Y, Wahlund LO, Westman E, Kinsey A, Guntert A et al (2010) Association of plasma clusterin concentration with severity, pathology, and progression in Alzheimer disease. Arch Gen Psychiatry 67:739–748

    PubMed  Google Scholar 

  • Thies E, Mandelkow EM (2007) Missorting of tau in neurons causes degeneration of synapses that can be rescued by the kinase MARK2/Par-1. J Neurosci 27:2896–2907

    PubMed  CAS  Google Scholar 

  • Thinakaran G, Koo EH (2008) Amyloid precursor protein trafficking, processing, and function. J Biol Chem 283:29615–29619

    PubMed  CAS  Google Scholar 

  • Tickler AK, Smith DG, Ciccotosto GD, Tew DJ, Curtain CC, Carrington D, Masters CL, Bush AI, Cherny RA, Cappai R et al (2005) Methylation of the imidazole side chains of the Alzheimer disease amyloid-beta peptide results in abolition of superoxide dismutase-like structures and inhibition of neurotoxicity. J Biol Chem 280:13355–13363

    PubMed  CAS  Google Scholar 

  • Tietz NW (1987) Fundamentals of clinical chemistry, 3rd edn. Saunders, Philadelphia

    Google Scholar 

  • Treiber C, Simons A, Strauss M, Hafner M, Cappai R, Bayer TA, Multhaup G (2004) Clioquinol mediates copper uptake and counteracts copper efflux activities of the amyloid precursor protein of Alzheimer’s disease. J Biol Chem 279:51958–51964

    PubMed  CAS  Google Scholar 

  • Tsivkovskii R, Eisses JF, Kaplan JH, Lutsenko S (2002) Functional properties of the copper-transporting ATPase ATP7B (the Wilson’s disease protein) expressed in insect cells. J Biol Chem 277:976–983

    PubMed  CAS  Google Scholar 

  • Tümer Z, Lund C, Tolshave J, Vural B, Tønnesen T, Horn N (1997) Identification of point mutations in 41 unrelated patients affected with Menkes disease. Am J Hum Genet 60:63–71

    PubMed  Google Scholar 

  • Tümer Z, Møller LB, Horn N (1999) Mutation spectrum of ATP7A, the gene defective in Menkes disease. Adv Exp Med Biol 448:83–95

    PubMed  Google Scholar 

  • Uchida Y, Gomi F, Masumizu T, Miura Y (2002) Growth inhibitory factor prevents neurite extension and the death of cortical neurons caused by high oxygen exposure through hydroxyl radical scavenging. J Biol Chem 277:32353–32359

    PubMed  CAS  Google Scholar 

  • Urano Y, Hayashi I, Isoo N, Reid PC, Shibasaki Y, Noguchi N, Tomita T, Iwatsubo T, Hamakubo T, Kodama T (2005) Association of active gamma-secretase complex with lipid rafts. J Lipid Res 46:904–912

    PubMed  CAS  Google Scholar 

  • Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross S, Amarante P, Loeloff R et al (1999) Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 286:735–741

    PubMed  CAS  Google Scholar 

  • Vetrivel KS, Cheng H, Lin W, Sakurai T, Li T, Nukina N, Wong PC, Xu H, Thinakaran G (2004) Association of gamma-secretase with lipid rafts in post-Golgi and endosome membranes. J Biol Chem 279:44945–44954

    PubMed  CAS  Google Scholar 

  • Vetrivel KS, Cheng H, Kim SH, Chen Y, Barnes NY, Parent AT, Sisodia SS, Thinakaran G (2005) Spatial segregation of gamma-secretase and substrates in distinct membrane domains. J Biol Chem 280:25892–25900

    PubMed  CAS  Google Scholar 

  • Vigo-Pelfrey C, Lee D, Keim P, Lieberburg I, Schenk DB (1993) Characterization of beta-amyloid peptide from human cerebrospinal fluid. J Neurochem 61:1965–1968

    PubMed  CAS  Google Scholar 

  • von Bergen M, Friedhoff P, Biernat J, Heberle J, Mandelkow EM, Mandelkow E (2000) Assembly of tau protein into Alzheimer paired helical filaments depends on a local sequence motif ((306)VQIVYK(311)) forming beta structure. Proc Natl Acad Sci USA 97:5129–5134

    Google Scholar 

  • Voskoboinik I, Camakaris J, Mercer JF (2002) Understanding the mechanism and function of copper P-type ATPases. Adv Protein Chem 60:123–150

    PubMed  CAS  Google Scholar 

  • Vulpe C, Levinson B, Whitney S, Packman S, Gitschier J (1993) Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Nat Genet 3:7–13

    PubMed  CAS  Google Scholar 

  • Waggoner DJ, Bartnikas TB, Gitlin JD (1999) The role of copper in neurodegenerative disease. Neurobiol Dis 6:221–230

    PubMed  CAS  Google Scholar 

  • Walker JM, Tsivkovskii R, Lutsenko S (2002) Metallochaperone Atox1 transfers copper to the NH2-terminal domain of the Wilson’s disease protein and regulates its catalytic activity. J Biol Chem 277:27953–27959

    PubMed  CAS  Google Scholar 

  • Walsh DM, Selkoe DJ (2007) Abeta oligomers – a decade of discovery. J Neurochem 101:1172–1184

    PubMed  CAS  Google Scholar 

  • Walsh DM, Tseng BP, Rydel RE, Podlisny MB, Selkoe DJ (2000) The oligomerization of amyloid beta-protein begins intracellularly in cells derived from human brain. Biochemistry 39:10831–10839

    PubMed  CAS  Google Scholar 

  • Wang J, Markesbery WR, Lovell MA (2006) Increased oxidative damage in nuclear and mitochondrial DNA in mild cognitive impairment. J Neurochem 96:825–832

    PubMed  CAS  Google Scholar 

  • Wang Q, Werstiuk NH, Kramer JR, Bell RA (2011) Effects of Cu ions and explicit water molecules on the copper binding domain of amyloid precursor protein APP(131-189): a molecular dynamics study. J Phys Chem B 115:9224–9235

    PubMed  CAS  Google Scholar 

  • Weiss KC, Linder MC (1985) Copper transport in rats involving a new plasma protein. Am J Physiol 249:E77–88

    PubMed  CAS  Google Scholar 

  • White AR, Multhaup G, Maher F, Bellingham S, Camakaris J, Zheng H, Bush AI, Beyreuther K, Masters CL, Cappai R (1999a) The Alzheimer’s disease amyloid precursor protein modulates copper-induced toxicity and oxidative stress in primary neuronal cultures. J Neurosci 19:9170–9179

    PubMed  CAS  Google Scholar 

  • White AR, Reyes R, Mercer JF, Camakaris J, Zheng H, Bush AI, Multhaup G, Beyreuther K, Masters CL, Cappai R (1999b) Copper levels are increased in the cerebral cortex and liver of APP and APLP2 knockout mice. Brain Res 842:439–444

    PubMed  CAS  Google Scholar 

  • White AR, Du T, Laughton KM, Volitakis I, Sharples RA, Xilinas ME, Hoke DE, Holsinger RM, Evin G, Cherny RA et al (2006) Degradation of the Alzheimer disease amyloid beta-peptide by metal-dependent up-regulation of metalloprotease activity. J Biol Chem 281:17670–17680

    PubMed  CAS  Google Scholar 

  • Whitson JS, Selkoe DJ, Cotman CW (1989) Amyloid beta protein enhances the survival of hippocampal neurons in vitro. Science 243:1488–1490

    PubMed  CAS  Google Scholar 

  • Whitson JS, Glabe CG, Shintani E, Abcar A, Cotman CW (1990) Beta-amyloid protein promotes neuritic branching in hippocampal cultures. Neurosci Lett 110:319–324

    PubMed  CAS  Google Scholar 

  • Wille H, Drewes G, Biernat J, Mandelkow EM, Mandelkow E (1992) Alzheimer-like paired helical filaments and antiparallel dimers formed from microtubule-associated protein tau in vitro. J Cell Biol 118:573–584

    PubMed  CAS  Google Scholar 

  • Wirth PL, Linder MC (1985) Distribution of copper among components of human serum. J Natl Cancer Inst 75:277–284

    PubMed  CAS  Google Scholar 

  • Yankner BA, Duffy LK, Kirschner DA (1990) Neurotrophic and neurotoxic effects of amyloid beta protein: reversal by tachykinin neuropeptides. Science 250:279–282

    PubMed  CAS  Google Scholar 

  • Yoshimoto N, Tasaki M, Shimanouchi T, Umakoshi H, Kuboi R (2005) Oxidation of cholesterol catalyzed by amyloid beta-peptide (Abeta)–Cu complex on lipid membrane. J Biosci Bioeng 100:455–459

    PubMed  CAS  Google Scholar 

  • Zheng W, Xin N, Chi ZH, Zhao BL, Zhang J, Li JY, Wang ZY (2009) Divalent metal transporter 1 is involved in amyloid precursor protein processing and A{beta} generation. FASEB J 23:4207–4217

    Google Scholar 

  • Zheng Z, White C, Lee J, Peterson TS, Bush AI, Sun GY, Weisman GA, Petris MJ (2010) Altered microglial copper homeostasis in a mouse model of Alzheimer’s disease. J Neurochem 114:1630–1638

    PubMed  CAS  Google Scholar 

  • Zhou T, Rosen BP (1997) Tryptophan fluorescence reports nucleotide-induced conformational changes in a domain of the ArsA ATPase. J Biol Chem 272:19731–19737

    PubMed  CAS  Google Scholar 

  • Zhou LX, Du JT, Zeng ZY, Wu WH, Zhao YF, Kanazawa K, Ishizuka Y, Nemoto T, Nakanishi H, Li YM (2007) Copper (II) modulates in vitro aggregation of a tau peptide. Peptides 28:2229–2234

    PubMed  CAS  Google Scholar 

  • Zou K, Gong JS, Yanagisawa K, Michikawa M (2002) A novel function of monomeric amyloid beta-protein serving as an antioxidant molecule against metal-induced oxidative damage. J Neurosci 22:4833–4841

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Cherny .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hung, Y.H., Bush, A.I., Cherny, R.A. (2012). Copper and Alzheimer Disease: The Good, the Bad and the Ugly. In: Li, Y., Zhang, J. (eds) Metal Ion in Stroke. Springer Series in Translational Stroke Research. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9663-3_30

Download citation

Publish with us

Policies and ethics