Skip to main content

Porphyrin-Based Nanocomposites for Biosensing

  • Chapter
  • First Online:
NanoBiosensing

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Porphyrins are an important class of conjugated organic molecules, which can be employed to mimic the active site of many important enzymes, such as hemoglobin, myoglobin, cytochrome c oxidase (CcO), nitric oxide reductase, vitamin B12, and chlorophyll [1–3]. The macrocyclic structure of porphyrin can conjugate many metal elements to form stable metalloporphyrins, which have remarkable photo-, catalytic-, electro-, and biochemical properties. Among these complexes, iron porphyrins can be used well as electron media based on the reversible redox of Fe3+/Fe2+ and exhibit good electrocatalysis to many small molecules related to life processes [4, 5], including dissolved oxygen, NO, neurotransmitters, hydrogen peroxide, and nitrite. On the other hand, high-valent iron(IV)–porphyrin as a strong oxidant has been utilized to catalyze the mono-oxygenation of organic substrates and biomolecules in many chemical reactions [6, 7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Balaban, T.S., Linke-Schaetzel, M., Bhise, A.D., et al.: Structural characterization of artificial self-assembling porphyrins that mimic the natural chlorosomal bacteriochlorophylls c, d, and e. Chem. Eur. J. 11, 2267–2275 (2005)

    Article  CAS  Google Scholar 

  2. Collman, J.P., Yan, Y.L., Lei, J.P., et al.: Active-site models of bacterial nitric oxide reductase featuring tris-histidyl and glutamic acid mimics: influence of a carboxylate ligand on Fe-B binding and the heme Fe/Fe-B redox potential. Inorg. Chem. 45, 7581–7583 (2006)

    Article  CAS  Google Scholar 

  3. Collman, J.P., Devaraj, N.K., Decreau, R.A., et al.: A cytochrome c oxidase model catalyzes oxygen to water reduction under rate-limiting electron flux. Science 315, 1565–1568 (2007)

    Article  CAS  Google Scholar 

  4. Steiger, B., Anson, F.C.: Examination of cobalt “picket fence” porphyrin and its complex with 1-methylimidazole as catalysts for the electroreduction of dioxygen. Inorg. Chem. 39, 4579–4585 (2000)

    Article  CAS  Google Scholar 

  5. Collman, J.P., Boultaov, R., Sunderland, C.J., et al.: Electrochemical metalloporphyrin-catalyzed reduction of chlorite. J. Am. Chem. Soc. 124, 10670–10671 (2002)

    Article  CAS  Google Scholar 

  6. Lei, J.P., Ju, H.X., Ikeda, O.: Catalytic oxidation of nitric oxide and nitrite mediated by water-soluble high-valent iron porphyrins at an ITO electrode. J. Electroanal. Chem. 567, 331–338 (2004)

    Article  CAS  Google Scholar 

  7. Takahashi, A., Kurahashi, T., Fujii, H.: Effect of imidazole and phenolate axial ligands on the electronic structure and reactivity of oxoiron(IV) porphyrin π-cation radical complexes: drastic increase in oxo-transfer and hydrogen abstraction reactivities. Inorg. Chem. 48, 2614–2625 (2009)

    Article  CAS  Google Scholar 

  8. Collman, J.P., Boulatov, R., Sunderland, C.J., et al.: Functional analogues of cytochrome c oxidase, myoglobin, and hemoglobin. Chem. Rev. 104, 561–588 (2004)

    Article  CAS  Google Scholar 

  9. Tu, W.W., Lei, J.P., Ju, H.X.: Noncovalent nanoassembly of porphyrin on single-walled carbon nanotubes for electrocatalytic reduction of nitric oxide and oxygen. Electrochem. Commun. 10, 766–769 (2008)

    Article  CAS  Google Scholar 

  10. Tu, W.W., Lei, J.P., Ju, H.X.: Functionalization of carbon nanotubes with water-insoluble porphyrin in ionic liquid: direct electrochemistry and highly sensitive amperometric biosensing for trichloroacetic acid. Chem. Eur. J. 15, 779–784 (2009)

    Article  CAS  Google Scholar 

  11. Murakami, H., Nomura, T., Nakashima, N.: Noncovalent porphyrin-functionalized single-walled carbon nanotubes in solution and the formation of porphyrin–nanotube nanocomposites. Chem. Phys. Lett. 378, 481–485 (2003)

    Article  CAS  Google Scholar 

  12. Zhao, J.X., Ding, Y.H.: Functionalization of single-walled carbon nanotubes with metalloporphyrin complexes: a theoretical study. J. Phys. Chem. C 112, 11130–11134 (2008)

    Article  CAS  Google Scholar 

  13. Li, H.P., Zhou, B., Lin, Y., et al.: Selective interactions of porphyrins with semiconducting single-walled carbon nanotubes. J. Am. Chem. Soc. 126, 1014–1015 (2004)

    Article  CAS  Google Scholar 

  14. Hasobe, T., Fukuzumi, S., Kamat, P.V.: Ordered assembly of protonated porphyrin driven by single-wall carbon nanotubes: J- and H-aggregates to nanorods. J. Am. Chem. Soc. 127, 11884–11885 (2005)

    Article  CAS  Google Scholar 

  15. Alvaro, M., Atienzar, P., Cruz, P.D.L., et al.: Synthesis, photochemistry, and electrochemistry of single-wall carbon nanotubes with pendent pyridyl groups and of their metal complexes with zinc porphyrin comparison with pyridyl-bearing fullerenes. J. Am. Chem. Soc. 128, 6626–6635 (2006)

    Article  CAS  Google Scholar 

  16. Yu, J.X., Mathew, S., Flavel, B.S., et al.: Ruthenium porphyrin functionalized single-walled carbon nanotube arrays – a step toward light harvesting antenna and multibit information storage. J. Am. Chem. Soc. 130, 8788–8796 (2008)

    Article  CAS  Google Scholar 

  17. Chitta, R., Sandanayaka, A.S.D., Schumacher, A.L., et al.: Donor-acceptor nanohybrids of zinc naphthalocyanine or zinc porphyrin noncovalently linked to single-wall carbon nanotubes for photoinduced electron transfer. J. Phys. Chem. C 111, 6947–6955 (2007)

    Article  CAS  Google Scholar 

  18. Tu, W.W., Lei, J.P., Jian, G.Q., et al.: Noncovalent assembly of picket-fence porphyrin on nitrogen-doped carbon nanotubes for highly efficient catalysis and biosensing. Chem. Eur. J. 16, 4120–4126 (2010)

    Article  CAS  Google Scholar 

  19. Liu, Z.B., Tian, J.G., Guo, Z., et al.: Enhanced optical limiting effects in porphyrin-covalently functionalized single-walled carbon nanotubes. Adv. Mater. 20, 511–515 (2008)

    Article  CAS  Google Scholar 

  20. Baskaran, D., Mays, J.W., Zhang, X.P., et al.: Carbon nanotubes with covalently linked porphyrin antennae: photoinduced electron transfer. J. Am. Chem. Soc. 127, 6916–6917 (2005)

    Article  CAS  Google Scholar 

  21. Chen, J.Y., Collier, C.P.: Noncovalent functionalization of single-walled carbon nanotubes with water-soluble porphyrins. J. Phys. Chem. B 109, 7605–7609 (2005)

    Article  CAS  Google Scholar 

  22. Guldi, D.M., Rahman, G.M.A., Jux, N., et al.: Functional single-wall carbon nanotube nanohybridd-associating SWNTs with water-soluble enzyme model systems. J. Am. Chem. Soc. 127, 9830–9838 (2005)

    Article  CAS  Google Scholar 

  23. Ehli, C., Rahman, G.M.A., Jux, N., et al.: Interactions in single wall carbon nanotubes/pyrene/porphyrin nanohybrids. J. Am. Chem. Soc. 128, 11222–11231 (2006)

    Article  CAS  Google Scholar 

  24. Guldi, D.M., Rahman, G.M.A., Prato, M., et al.: Single-wall carbon nanotubes as integrative building blocks for solar-energy conversion. Angew. Chem. Int. Ed. 44, 2015–2018 (2005)

    Article  CAS  Google Scholar 

  25. Yu, P., Yan, J., Zhao, H., et al.: Rational functionalization of carbon nanotube/ionic liquid bucky gel with dual tailor-made electrocatalysts for four-electron reduction of oxygen. J. Phys. Chem. C 112, 2177–2182 (2008)

    Article  CAS  Google Scholar 

  26. Zhang, W., Shaikh, A.U., Tsui, E.Y., et al.: Cobalt porphyrin functionalized carbon nanotubes for oxygen reduction. Chem. Mater. 21, 3234–3241 (2009)

    Article  CAS  Google Scholar 

  27. Dembinska, B., Kulesza, P.J.: Multi-walled carbon nanotube-supported tungsten oxide-containing multifunctional hybrid electrocatalytic system for oxygen reduction in acid medium. Electrochim. Acta 54, 4682–4687 (2009)

    Article  CAS  Google Scholar 

  28. Liu, Y., Yan, Y.L., Lei, J.P., et al.: Functional multiwalled carbon nanotube nanocomposite with iron picket-fence porphyrin and its electrocatalytic behavior. Electrochem. Commun. 9, 2564–2570 (2007)

    Article  CAS  Google Scholar 

  29. Kowalewska, B., Skunik, M., Karnicka, K., et al.: Enhancement of bio-electrocatalytic oxygen reduction at the composite film of cobalt porphyrin immobilized within the carbon nanotube-supported peroxidase enzyme. Electrochim. Acta 53, 2408–2415 (2008)

    Article  CAS  Google Scholar 

  30. Turdean, G.L., Popescu, I.C., Curulli, A., et al.: Iron(III) protoporphyrin IX – single-wall carbon nanotubes modified electrodes for hydrogen peroxide and nitrite detection. Electrochim. Acta 51, 6435–6441 (2006)

    Article  CAS  Google Scholar 

  31. Lin, Z.Y., Chen, J.H., Chi, Y.W., et al.: Electrochemiluminescent behavior of luminol on the glassy carbon electrode modified with CoTPP/MWNT composite film. Electrochim. Acta 53, 6464–6468 (2008)

    Article  CAS  Google Scholar 

  32. Huang, C.Z., Liao, Q.G., Li, Y.F.: Non-covalent anionic porphyrin functionalized multi-walled carbon nanotubes as an optical probe for specific DNA detection. Talanta 75, 163–166 (2008)

    CAS  Google Scholar 

  33. Wu, Y.H.: Electrocatalysis and sensitive determination of Sudan I at the single-walled carbon nanotubes and iron(III)-porphyrin modified glassy carbon electrodes. Food Chem. 121, 580–584 (2010)

    Article  CAS  Google Scholar 

  34. Luz, R.C.S., Damos, F.S., Tanaka, A.A., et al.: Electrocatalysis of reduced L-glutathione oxidation by iron(III) tetra-(N-methyl-4-pyridyl)-porphyrin (FeT4MPyP) adsorbed on multi-walled carbon nanotubes. Talanta 76, 1097–1104 (2008)

    Article  CAS  Google Scholar 

  35. Pagona, G., Sandanayaka, A.S.D., Araki, Y., et al.: Electronic interplay on illuminated aqueous carbon nanohorn-porphyrin ensembles. J. Phys. Chem. B 110, 20729–20732 (2006)

    Article  CAS  Google Scholar 

  36. Pagona, G., Fan, J., Maignè, A., et al.: Aqueous carbon nanohorn–pyrene–porphyrin nanoensembles: controlling charge-transfer interactions. Diam. Relat. Mater. 16, 1150–1153 (2007)

    Article  CAS  Google Scholar 

  37. Tu, W.W., Lei, J.P., Ding, L., et al.: Sandwich nanohybrid of single-walled carbon nanohorns–TiO2–porphyrin for electrocatalysis and amperometric biosensing towards chloramphenicol. Chem. Commun. 28, 4227–4229 (2009)

    Article  Google Scholar 

  38. Xu, Y.F., Liu, Z.B., Zhang, X.L., et al.: A graphene hybrid material covalently functionalized with porphyrin: synthesis and optical limiting property. Adv. Mater. 21, 1275–1279 (2009)

    Article  CAS  Google Scholar 

  39. Xu, Y.X., Zhao, L., Bai, H., et al.: Chemically converted graphene induced molecular flattening of 5,10,15,20-tetrakis(1-methyl-4-pyridinio)porphyrin and its application for optical detection of cadmium(II) ions. J. Am. Chem. Soc. 131, 13490–13497 (2009)

    Article  CAS  Google Scholar 

  40. Tu, W.W., Zhang, S.Y., Lei, J.P., et al.: Characterization, direct electrochemistry and amperometric biosensing of graphene by noncovalent functionalization with picket-fence porphyrin. Chem. Eur. J. 16, 10771–10777 (2010)

    Google Scholar 

  41. Rochford, J., Chu, D., Hagfeldt, A., et al.: Tetrachelate porphyrin chromophores for metal oxide semiconductor sensitization: effect of the spacer length and anchoring group position. J. Am. Chem. Soc. 129, 4655–4665 (2007)

    Article  CAS  Google Scholar 

  42. Rochford, J., Galoppini, E.: Zinc(II) tetraarylporphyrins anchored to TiO2, ZnO, and ZrO2 nanoparticle films through rigid-rod linkers. Langmuir 24, 5366–5374 (2008)

    Article  CAS  Google Scholar 

  43. Brumbach, M.T., Boal, A.K., Wheeler, D.R.: Metalloporphyrin assemblies on pyridine-functionalized titanium dioxide. Langmuir 25, 10685–10690 (2009)

    Article  CAS  Google Scholar 

  44. Yang, X.J., Dai, Z.F., Miura, A.: Different back electron transfer from titanium dioxide nanoparticles to tetra (4-sulfonatophenyl) porphyrin monomer and its J-aggregate. Chem. Phys. Lett. 334, 257–264 (2001)

    Article  CAS  Google Scholar 

  45. Marczak, R., Werner, F., Gnichwitz, J.F., et al.: Communication via electron and energy ­transfer between zinc oxide nanoparticles and organic adsorbates. J. Phys. Chem. C 113, 4669–4678 (2009)

    Article  CAS  Google Scholar 

  46. Yang, C., Yang, Z.M., Gu, H.W.: Facet-selective 2D self-assembly of TiO2 nanoleaves via supramolecular interactions. Chem. Mater. 20, 7514–7520 (2008)

    Article  CAS  Google Scholar 

  47. Yu, J.H., Chen, J.R., Wang, X.S., et al.: Porphyrin capped TiO2 nanoclusters, tyrosine methyl ester enhanced electron transfer. Chem. Commun. 15, 1856–1857 (2003)

    Article  Google Scholar 

  48. Hasobe, T., Fukuzumi, S., Hattori, S., et al.: Shape- and functionality-controlled organization of TiO2–porphyrin–C60 assemblies for improved performance of photochemical solar cells. Chem. Asian J. 2, 265–272 (2007)

    Article  CAS  Google Scholar 

  49. Chen, D.M., Yang, D., Geng, J.Q., et al.: Improving visible-light photocatalytic activity of N-doped TiO2 nanoparticles via sensitization by Zn porphyrin. Appl. Surf. Sci. 255, 2879–2884 (2008)

    Article  CAS  Google Scholar 

  50. Imahori, H., Hayashi, S., Umeyama, T., et al.: Comparison of electrode structures and photovoltaic properties of porphyrin-sensitized solar cells with TiO2 and Nb, Ge, Zr-Added TiO2 composite electrodes. Langmuir 22, 11405–11411 (2006)

    Article  CAS  Google Scholar 

  51. El-Deab, M.S., Othman, S.H., Okajima, T., et al.: Non-platinum electrocatalysts: manganese oxide nanoparticle-cobaltporphyrin binary catalysts for oxygen reduction. J. Appl. Electrochem. 38, 1445–1451 (2008)

    Article  CAS  Google Scholar 

  52. Ikeda, A., Tsuchiya, Y., Konishi, T., et al.: Photocurrent-boosting by intramembrane electron mediation between titania nanoparticles dispersed into nafion-porphyrin composites. Chem. Mater. 17, 4018–4022 (2005)

    Article  CAS  Google Scholar 

  53. Castellani, A.M., Gushikem, Y.: Electrochemical properties of a porphyrin-cobalt (II) adsorbed on silica–titania–phosphate composite surface prepared by the sol–gel method. J. Colloid Interface Sci. 230, 195–199 (2000)

    Article  CAS  Google Scholar 

  54. Dias, S.L.P., Gushikem, Y., Ribeiro, E.S., et al.: Cobalt(II) hematoporphyrin IX and protoporphyrin IX complexes immobilized on highly dispersed titanium(IV) oxide on a cellulose microfiber surface: electrochemical properties and dissolved oxygen reduction study. J. Electroanal. Chem. 523, 64–69 (2002)

    Article  CAS  Google Scholar 

  55. Francisco, M.S.P., Cardoso, W.S., Kubota, L.T., et al.: Electrocatalytic oxidation of phenolic compounds using an electrode modified with Ni(II) porphyrin adsorbed on SiO2/Nb2O5-phosphate synthesized by the sol–gel method. J. Electroanal. Chem. 602, 29–36 (2007)

    Article  CAS  Google Scholar 

  56. Zenkevich, E.I., Blaudeck, T., Shulga, A.M., et al.: Identification and assignment of porphyrin–CdSe hetero-nanoassemblies. J. Luminesc. 122–123, 784–788 (2007)

    Article  Google Scholar 

  57. Zenkevich, E., Cichos, F., Shulga, A., et al.: Nanoassemblies designed from semiconductor quantum dots and molecular arrays. J. Phys. Chem. B 109, 8679–8692 (2005)

    Article  CAS  Google Scholar 

  58. Li, X.Q., Mu, J., Li, F., et al.: Self-assembly and optical properties of water-soluble porphyrin alternating CdSe nanoparticulate films. Colloid Surf. A 260, 239–243 (2005)

    Article  CAS  Google Scholar 

  59. Jhonsi, M.A., Renganathan, R.: Investigations on the photoinduced interaction of water soluble thioglycolic acid (TGA) capped CdTe quantum dots with certain porphyrins. J. Colloid Interface Sci. 344, 596–602 (2010)

    Article  CAS  Google Scholar 

  60. Gu, H.W., Xu, K.M., Yang, Z.M., et al.: Synthesis and cellular uptake of porphyrin decorated iron oxide nanoparticles – a potential candidate for bimodal anticancer therapy. Chem. Commun. 34, 4270–4272 (2005)

    Article  Google Scholar 

  61. Ohyama, J., Hitomi, Y., Higuchi, Y., et al.: One-phase synthesis of small gold nanoparticles coated by a horizontal porphyrin monolayer. Chem. Commun. 47, 6300–6302 (2008)

    Article  Google Scholar 

  62. Cormode, D.P., Davis, J.J., Beer, P.D.: Anion sensing porphyrin functionalized nanoparticles. J. Inorg. Organomet. Polym. 18, 32–40 (2008)

    Article  CAS  Google Scholar 

  63. Fantuzzi, G., Pengo, P., Gomila, R., et al.: Multivalent recognition of bis- and tris-Zn-porphyrins by N-methylimidazole functionalized gold nanoparticles. Chem. Commun. 8, 1004–1005 (2003)

    Article  Google Scholar 

  64. Hasobe, T., Imahori, H., Kamat, P.V., et al.: Photovoltaic cells using composite nanoclusters of porphyrins and fullerenes with gold nanoparticles. J. Am. Chem. Soc. 127, 1216–1228 (2005)

    Article  CAS  Google Scholar 

  65. Imahori, H., Arimura, M., Hanada, T., et al.: Photoactive three-dimensional monolayers: porphyrin-alkanethiolate-stabilized gold clusters. J. Am. Chem. Soc. 123, 335–336 (2001)

    Article  CAS  Google Scholar 

  66. Yamada, M., Kuzume, A., Kurihara, M.: Formation of a novel porphyrin–gold nanoparticle network film induced by IR light irradiation. Chem. Commun. 23, 2476–2477 (2001)

    Article  Google Scholar 

  67. Satake, A., Fujita, M., Kurimoto, Y., et al.: Single supramolecular porphyrin wires bridging gold nanoparticles. Chem. Commun. 10, 1231–1233 (2009)

    Article  Google Scholar 

  68. Murakami, Y., Konishi, K.: Remarkable co-catalyst effect of gold nanoclusters on olefin oxidation catalyzed by a manganese-porphyrin complex. J. Am. Chem. Soc. 129, 14401–14407 (2007)

    Article  CAS  Google Scholar 

  69. Huang, M.H., Shen, Y., Cheng, W.L., et al.: Nanocomposite films containing Au nanoparticles formed by electrochemical reduction of metal ions in the multilayer films as electrocatalyst for dioxygen reduction. Anal. Chim. Acta 535, 15–22 (2005)

    Article  CAS  Google Scholar 

  70. Damos, F.S., Luz, R.C.S., Tanaka, A.A., et al.: Dissolved oxygen amperometric sensor based on layer-by-layer assembly using host-guest supramolecular interactions. Anal. Chim. Acta 664, 144–150 (2010)

    Article  CAS  Google Scholar 

  71. Gong, F.C., Xiao, Z.D., Cao, Z., et al.: A selective artemisinin-sensor using metalloporphyrin as a recognition element entrapped in the Au-nanoparticles-chitosan modified electrodes. Talanta 72, 1453–1457 (2007)

    Article  CAS  Google Scholar 

  72. Molnár, P., Procházka, M.: SER(R)S of porphyrins on Ag nanoparticles immobilized by silane: a unique way to obtain free-base porphyrin spectra. J. Raman Spectrosc. 38, 799–801 (2007)

    Article  Google Scholar 

  73. Hajduková, N., Procházka, M., Molnár, P., et al.: SERRS of free-base porphyrins on immobilized metal gold and silver nanoparticles. Vib. Spectrosc. 48, 142–147 (2008)

    Article  Google Scholar 

  74. Arakawa, T., Munaoka, T., Akiyama, T., et al.: Effects of silver nanoparticles on photoelectrochemical responses of organic dyes. J. Phys. Chem. C 113, 11830–11835 (2009)

    Article  CAS  Google Scholar 

  75. Zhu, M.S., Han, M., Du, Y.K., et al.: The synthesis, light-harvesting, and photocatalysis of naphthylporphyrin-functionalized platinum nanocomposites. Dyes Pigm. 86, 81–86 (2010)

    Article  CAS  Google Scholar 

  76. Huang, M.H., Shao, Y., Sun, X.P., et al.: Alternate assemblies of platinum nanoparticles and metalloporphyrins as tunable electrocatalysts for dioxygen reduction. Langmuir 21, 323–329 (2005)

    Article  CAS  Google Scholar 

  77. Shen, Y., Liu, J.Y., Wu, A.G., et al.: Preparation of multilayer films containing Pt nanoparticles on a glassy carbon electrode and application as an electrocatalyst for dioxygen reduction. Langmuir 19, 5397–5401 (2003)

    Article  CAS  Google Scholar 

  78. Wiyaratn, W., Hrapovic, S., Liu, Y.L., et al.: Light-assisted synthesis of Pt-Zn porphyrin nanocomposites and their use for electrochemical detection of organohalides. Anal. Chem. 77, 5742–5749 (2005)

    Article  CAS  Google Scholar 

  79. Xing, C.F., Xu, Q.L., Tang, H.G., et al.: Conjugated polymer/porphyrin complexes for efficient energy transfer and improving light-activated antibacterial activity. J. Am. Chem. Soc. 131, 13117–13124 (2009)

    Article  CAS  Google Scholar 

  80. Bédard, M.F., Sadasivan, S., Sukhorukov, G.B., et al.: Assembling polyelectrolytes and porphyrins into hollow capsules with laser-responsive oxidative properties. J. Mater. Chem. 19, 2226–2233 (2009)

    Article  Google Scholar 

  81. Carballo, R.R., Orto, V.C., Hurst, J.A., et al.: Covalently attached metalloporphyrins in LBL self-assembled redox polyelectrolyte thin films. Electrochim. Acta 53, 5215–5219 (2008)

    Article  CAS  Google Scholar 

  82. Wu, C.F., Bull, B., Christensen, K., et al.: Ratiometric single-nanoparticle oxygen sensors for biological imaging. Angew. Chem. Int. Ed. 48, 2741–2745 (2009)

    Article  CAS  Google Scholar 

  83. Cywinski, P.J., Moro, A.J., Stanca, S.E., et al.: Ratiometric porphyrin-based layers and ­nanoparticles for measuring oxygen in biosamples. Sens. Actuat. B Chem. 135, 472–477 (2009)

    Article  Google Scholar 

  84. Yan, Q., Yuan, J.Y., Kang, Y., et al.: Dual-sensing porphyrin-containing copolymer nanosensor as full-spectrum colorimeter and ultra-sensitive thermometer. Chem. Commun. 46, 2781–2783 (2010)

    Article  CAS  Google Scholar 

  85. Fu, B., Yu, H.C., Huang, J.W., et al.: Mn(III) porphyrins immobilized on magnetic polymer nanospheres as biomimetic catalysts hydroxylating cyclohexane with molecular oxygen. J. Mol. Catal. A Chem. 298, 74–80 (2009)

    Article  CAS  Google Scholar 

  86. Fagadar-Cosma, E., Enache, C., Vlascici, D., et al.: Novel nanomaterials based on 5,10,15,20-tetrakis(3,4-dimethoxyphenyl)-21H,23H-porphyrin entrapped in silica matrices. Mater. Res. Bull. 44, 2186–2193 (2009)

    Article  CAS  Google Scholar 

  87. Rossi, L.M., Silva, P.R., Vono, L.L.R., et al.: Protoporphyrin IX nanoparticle carrier: preparation, optical properties, and singlet oxygen generation. Langmuir 24, 12534–12538 (2008)

    Article  CAS  Google Scholar 

  88. Liang, S., Hartvickson, S., Kozliak, E., et al.: Effect of amorphous silica nanomatrix on kinetics of metalation of encapsulated porphyrin molecules. J. Phys. Chem. C 113, 19046–19054 (2009)

    Article  CAS  Google Scholar 

  89. Tao, S.Y., Li, G.T.: Porphyrin-doped mesoporous silica films for rapid TNT detection. Colloid Polym. Sci. 285, 721–728 (2007)

    Article  CAS  Google Scholar 

  90. Winkelmann, C.B., Ionica, I., Chevalier, X., et al.: Optical switching of porphyrin-coated silicon nanowire field effect transistors. Nano Lett. 7, 1454–1458 (2007)

    Article  CAS  Google Scholar 

  91. Ganesan, K., Kovtun, A., Neumann, S., et al.: Calcium phosphate nanoparticles: colloidally stabilized and made fluorescent by a phosphate-functionalized porphyrin. J. Mater. Chem. 18, 3655–3661 (2008)

    Article  CAS  Google Scholar 

  92. Palacin, T., Khanh, H.L., Jousselme, B., et al.: Efficient functionalization of carbon nanotubes with porphyrin dendrons via click chemistry. J. Am. Chem. Soc. 131, 15394–15402 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huangxian Ju .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ju, H., Zhang, X., Wang, J. (2011). Porphyrin-Based Nanocomposites for Biosensing. In: NanoBiosensing. Biological and Medical Physics, Biomedical Engineering. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-9622-0_4

Download citation

Publish with us

Policies and ethics