Skip to main content

Additives, Nanocomposites, and Barrier Coatings

  • Chapter
  • First Online:
Long-Term Durability of Polymeric Matrix Composites

Abstract

Material use is often governed by the properties it brings to an application, but in some cases those desirable properties are rapidly degraded by their intended use environment. Heat, abrasion caused by part-on-part wear, and particulate impact can damage material properties, especially polymer–fiber-reinforced composites. To ensure that the benefits of polymer composites can be utilized in these extreme environments, protection is needed. The simplest form of protection is the use of additives to the polymer matrix, such as antioxidants, thermal stabilizers, and flame retardants. Of newer interest is the use of nanocomposite technology, which provides enhanced thermal and mechanical durability, which sometimes brings multifunctional performance to the composite. Barrier coatings represent an engineering solution to protect the composite part, but newer research focuses on incorporation of the barrier coating during composite fabrication so that the protection is engineered to be a covalently bound part of the polymer rather than a post-fabrication add-on coating produced via painting or adhesive bonding. This chapter provides a survey of the broad range of protection solutions available for composites, with an emphasis on approaches that yield thermal and/or abrasion protection in polymer composites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. ASTM E176, “Standard Terminology of Fire Standards,” in Annual Book of ASTM Standards, Vol. 4.07, American Society for Testing and Materials, West Conshohocken, PA.

    Google Scholar 

  2. Hirschler, M. M.; Morgan, A. B. “Thermal Decomposition of Polymers” in “Society for Fire Protection Engineering Handbook” Eds. DiNenno, P. J.; Drysdale, D. D.; Beyler, C. L.; Walton, W. D.; Custer, R. L. P.; Hall, J. R.; Watts, J. M. National Fire Protection Association, Quincy, MA 2008, ISBN 978-0-87765-821-4.

    Google Scholar 

  3. “Fire Retardancy of Polymeric Materials” ed. Grand, A. F.; Wilkie, C. A. Marcel Dekker, Inc. New York. 2000. ISBN 0-8247-8879-6.

    Google Scholar 

  4. “Thermal decomposition, combustion and fire-retardancy of polyurethanes – a review of the recent literature” Levchik, S. V.; Weil, E. D. Polym. Int. 2004, 53, 1585–1610.

    Article  CAS  Google Scholar 

  5. “Thermal decomposition, combustion and flame-retardancy of epoxy resins – a review of the recent literature” Levchik, S. V.; Weil, E. D. Polym. Int. 2004, 53, 1901–1929.

    Article  CAS  Google Scholar 

  6. “Flammability” Tewarson, A. Chapter 42 in “Physical Properties of Polymers Handbook, Mark J. E. ed. AIP Press, NY 1996. pp 577–604.

    Google Scholar 

  7. “Screening Tests for Fire Safety of Composites for Marine Applications” Sorathia, U.; Long, G.; Gracik, T.; Blum, M.; Ness, J. Fire Mater. 2001, 25, 215–222.

    Article  CAS  Google Scholar 

  8. “Effects of Polyurethane Mattress Foam Properties and Geometry on Small and Large-Scale Fire Test Results” Hurd, M.; Weckman, E.; Enniful, E. Torvi, D. Proceedings of Fire and Materials 2007 Conference, January 29–31, 2007, San Francisco, CA. Interscience Communications.

    Google Scholar 

  9. “The piloted transition to flaming in smoldering fire retarded and non-fire retarded polyurethane foam” Putzeys, O. M.; Fernandez-Pello, A. C.; Rein, G.; Urban, D. L. Fire and Materials, 2008, 32, 485–499.

    Article  CAS  Google Scholar 

  10. Figure provided by Dr. Jeffrey W. Gilman – US Department of Commerce, National Institute of Standards and Technology. Public Domain figure not subject to copyright.

    Google Scholar 

  11. http://en.wikipedia.org/wiki/Mechanochemistry.Accessed July 7 2011

  12. Phelps, A. W. "Materials selection for wear resistance," Chapter 41, Handbook of Materials Selection, M. Kutz, ed., Wiley, New York, 2002, p. 1275.

    Chapter  Google Scholar 

  13. “Degradation issues of polymer materials used in railway field” Ito, M,; Nagai, K. Polym. Degrad. Stab. 2008, 93, 1723–1735 and extensive references therein.

    Article  CAS  Google Scholar 

  14. “Kirk-Othmer Encyclopedia of Chemical Technology, 5th Ed.” John Wiley & Sons, Hoboken, NJ, 2007. ISBN 13-978-0471484943. Sections on Antioxidants, Polymers, and Flame Retardants.

    Google Scholar 

  15. Handbook of Polymer Degradation, 2nd edition, Hamid, S. H., Ed. CRC Press, 2000 ISBN 978-0824703240.

    Google Scholar 

  16. Plastics Additives – An A-Z Reference (Pritchard, G.), Springer-Verlag, 2007. ISBN 978-0412727207.

    Google Scholar 

  17. “Fire Retardancy of Polymeric Materials, 2nd Ed.” Wilkie, C. A.; Morgan, A. B. Eds. CRC Press. Baco Raton, FL, USA. ISBN 978-1420083996, December 2009.

    Google Scholar 

  18. “Advances in fire retardant materials” Horrocks, A. R.; Price, D. Eds. Woodhead Publishing Ltd., England. ISBN 978-1-84569-262-9.

    Google Scholar 

  19. “Commercial Flame Retardancy of Thermoplastic Polyesters – A Review.” Weil, E. D.; Levchik, S. J. Fire Sci. 2004, 22, 339–350.

    Article  Google Scholar 

  20. “Commercial Flame Retardancy of Unsaturated Polyester and Vinyl Resins: Review” Weil, E. D.; Levchik, S. J. Fire Sci. 2004, 22, 339–350.

    Article  Google Scholar 

  21. “Thermal decomposition, combustion and flame-retardancy of epoxy resins – a review of the recent literature” Levchik, S. V.; Weil, E. D. Polym. Int. 2004, 53, 1901–1929.

    Article  CAS  Google Scholar 

  22. “Flame Retardants in Commercial Use or Development for Textiles” Weil, E. D.; Levchik, S. V. J. Fire Sci. 2008, 26, 243–281.

    Article  CAS  Google Scholar 

  23. “Flame Retardants in Commercial Use or in Advanced Development in Polycarbonates and Polycarbonate Blends” Levchik, S. V.; Weil, E. D. J. Fire Sci. 2006, 24, 137–151.

    Article  CAS  Google Scholar 

  24. “A Review of Recent Progress in Phosphorus-based Flame Retardants” Levchik, S. V.; Weil, E. D. J. Fire Sci. 2006, 24, 345–364.

    Article  CAS  Google Scholar 

  25. “Flame Retardants for Polystyrenes in Commercial Use or Development” Weil, E. D.; Levchik, S. V. J. Fire Sci. 2007, 25, 241–264.

    Article  CAS  Google Scholar 

  26. “Fire retardant polymers: recent developments and opportunities” Bourbigot, S.; Duquesne, S. J. Mater. Chem. 2007, 17, 2283–2300.

    Article  CAS  Google Scholar 

  27. “Flame Retardants in Commercial Use or Development for Polyolefins” Weil, E. D.; Levchik, S. V. J. Fire Sci. 2008, 26, 5–42.

    Article  CAS  Google Scholar 

  28. “Fire Properties of Polymer Composite Materials” Eds. Mouritz, A. P.; Gibson, A. G. Springer-Verlag, The Netherlands, 2006. ISBN 978-1-4020-5355-9.

    Google Scholar 

  29. “Flame retardancy of silicone-based materials” Hamdani, S.; Longuet, C.; Perrin, D.; Lopez-cuesta, J-M.; Ganachaud, F. Polym. Degrad. Stab., 2009, 94, 465–495.

    Article  CAS  Google Scholar 

  30. XPS characterization of Friedel-Crafts cross-linked polystyrene” Wang, J.; Du, J.; Yao, H.; Wilkie, C. A. Polym. Degrad. Stab. 2001, 74, 321–326.

    Article  CAS  Google Scholar 

  31. “Synthesis and Testing of Nonhalogenated Alkyne-Containing Flame Retarding Polymer Additives” Morgan, A. B.; Tour, J. M. Macromolecules 1998, 31, 2857–2865.

    Article  CAS  Google Scholar 

  32. “Twenty Years of Polymer-Clay Nanocomposites” Okada, A.; Usuki, A. Macromol. Mater. Eng. 2007, 291, 1449–1476.

    Article  Google Scholar 

  33. “Polymer Nanocomposites” Krishnamoorti, R.; Vaia, R. A. J. Polym. Sci.: Part B: Polym. Phys. 2007, 45, 3252–3256.

    Article  CAS  Google Scholar 

  34. “Synthesis of nylon 6-clay hybrid” Usuki, A.; Kojima, Y.; Kawasumi, M.; Okada, A.; Fukushima, Y.; Kurauchi, T.; Kamigaito, O. J. Mater. Res. 1993, 8, 1179–1184.

    Article  CAS  Google Scholar 

  35. “The chemistry of polymer-clay hybrids” Okada, A.; Usuki, A. Mat. Sci. Eng. C. 1995, 3, 109–115.

    Article  Google Scholar 

  36. “Polymer/layered silicate nanocomposites: a review from preparation to processing” Ray, S. S.; Okamoto, M. Prog. Polym. Sci. 2003, 28, 1539–1641.

    Article  CAS  Google Scholar 

  37. “Polymer Nanocomposites Containing Carbon Nanotubes” Moniruzzaman, M.; Winey, K. I. Macromolecules 2006, 39, 5194–5205.

    Article  CAS  Google Scholar 

  38. “Synthetic, layered nanoparticles for polymeric nanocomposites (PNCs)” Utracki, L. A.; Sepehr, M.; Boccaleri, E. Polym. Adv. Technol. 2007, 18, 1–37.

    Article  CAS  Google Scholar 

  39. “Flame retarded polymer layered silicate nanocomposites: a review of commercial and open literature systems” Morgan, A. B. Polym. Adv. Technol. 2006, 17, 206–217.

    Article  CAS  Google Scholar 

  40. “Flame Retardant Polymer Nanocomposites” Edited by Alexander B. Morgan and Charles A. Wilkie. Book published by John Wiley & Sons, Hoboken, NJ 2007. ISBN 978-0-471-73426-0

    Google Scholar 

  41. “How Nano are Nanocomposites?” Schaefer, D. W.; Justice, R. S. Macromolecules 2007, 40, 8501–8517.

    Article  CAS  Google Scholar 

  42. “Polymer Nanocomposites with Prescribed Morphology: Going beyond Nanoparticle-Filled Polymers” Vaia, R. A.; Maguire, J. F. Chem. Mater. 2007, 19, 2736–2751.

    Article  CAS  Google Scholar 

  43. “Polymer nanotechnology: Nanocomposites” Paul, D. R.; Robeson, L. M. Polymer 2008, 49, 3187–3204.

    Article  CAS  Google Scholar 

  44. “A study of the flammability reduction mechanism of polystyrene-layered silicate nanocomposite: layered silicate reinforced carbonaceous char” Gilman, J. W.; Harris, R. H.; Shields, J. R.; Kashiwagi, T.; Morgan, A. B. Polym. Adv. Technol. 2006, 17, 263–271.

    Article  CAS  Google Scholar 

  45. “Relation between the viscoelastic and flammability properties of polymer nanocomposites” Kashiwagi, T.; Mu, M.; Winey, K.; Cipriano, B.; Raghavan, S. R.; Pack, S.; Rafailovich, M.; Yang, Y.; Grulke, E.; Shields, J.; Harris, R.; Douglas, J. Polymer 2008, 49, 4358–4368.

    Article  CAS  Google Scholar 

  46. “Nanoparticle networks reduce the flammability of polymer nanocomposites” Kashiwagi, T.; Du, F.; Douglas, J. F.; Winey, K. I.; Harris, R. H.; Shields, J. R. Nature Materials 2005, 4, 928–933.

    Article  CAS  Google Scholar 

  47. “Photo-oxidative degradation of polyethylene/montmorillonite nanocomposite” Qin, H.; Zhao, C.; Zhang, S.; Chen, G.; Yang, M. Polym. Degrad. and Stab. 2003, 81, 497–500.

    Article  CAS  Google Scholar 

  48. “Photo-oxidation of Polypropylene/Montmorillonite Nanocomposites. 1. Influence of Nanoclay and Compatibilizing Agent” Morlat, S.; Mailhot, B.; Gonzalez, D.; Gardette, J-L. Chem. Mat. 2004, 16, 377–383.

    Article  CAS  Google Scholar 

  49. “Photooxidation of ethylene-propylene-diene/montmorillonite nanocomposites” Morlat-Therias, S.; Mailhot, B.; Gardette, J-L.; Da Silva, C.; Haidar, B.; Vidal, A. Polym. Degrad. Stab. 2005, 90, 78–85.

    Article  CAS  Google Scholar 

  50. “Photo-oxidation behaviour of polyethylene/multi-wall carbon nanotube composite films” Dintcheva, N. Tz.; La Mantia, F. P.; Malatesta, V. Polym. Degrad. Stab. 2009, 94, 162–170.

    Article  CAS  Google Scholar 

  51. “Polymer/carbon nanotube composites: Influence of carbon Nanotubes on EVA photodegradation” Morlat-Therias, S.; Fanton, E.; Gardette, J-L.; Peeterbroeck, S.; Alexandre, M. Dubois, P. Polym. Degrad. Stab. 2007, 92, 1873–1882.

    Article  CAS  Google Scholar 

  52. “Organic-Inorganic Hybrids as Transparent Coatings for UV and X-ray Shielding” Mazzocchetti, L.; Cortecchia, E.; Scandola, M. ACS Applied Materials & Interfaces 2009, 1, 726–734.

    Article  CAS  Google Scholar 

  53. “Self-Passivation of Polymer-Layered Silicate Nanocomposites” Fong, H.; Vaia, R. A.; Sanders, J. H.; Lincoln, D.; Vreugdenhil, A. J.; Liu, W.; Bultman, J.; Chen, C. Chem. Mater. 2001, 13, 4123–4129.

    Article  CAS  Google Scholar 

  54. “Surface Controlled Fire Retardancy of Polymers Using Plasma Polymerisation” Schartel, B.; Kuhn, G.; Mix, R.; Friedrich, J. Macromol. Mater. Eng. 2002, 287, 579–582.

    Article  CAS  Google Scholar 

  55. “New approach to flame retardancy using plasma assisted surface polymerisation techniques” Bourbigot, S.; Jama, C.; Le Bras, M.; Delobel, R.; Dessaux, O.; Goudmand, P. Polym. Degrad. Stab. 1999, 66, 153–155.

    Article  CAS  Google Scholar 

  56. “Evaluation of Intumescent Coatings for Shipboard Fire Protection” Sorathia, U.; Gracik, T.; Ness, J.; Durkin, A.; Williams, F.; Hunstad, M.; Berry, F. J. Fire Sci. 2003, 21, 423–450.

    Article  CAS  Google Scholar 

  57. “Thermoplastic resins for thin film intumescent coatings – towards a better understanding of their effect on intumescence efficiency” Duquesne, S.; Magnet, S.; Jama, C.; Delobel, R. Polym. Degrad. Stab. 2005, 88, 63–69.

    Article  CAS  Google Scholar 

  58. “Thermal Barrier Effect of Intumescent Coatings and Mats on Fibre-Reinforced Polymeric Composites” Kandola, B. K.; Kandare, E.; Myler, P.; Chukwudolue, C.; Bhatti, W. Proceedings of Fire and Materials 2009, San Francisco, CA. pp 33–45.

    Google Scholar 

  59. “Fire retardancy of a buckypaper membrane” Wu, Q.; Zhang, C.; Liang, R.; Wang, B. Carbon 2008, 46, 1159–1174.

    Article  Google Scholar 

  60. “Ultrasound assisted twin screw extrusion of polymer-nanocomposites containing carbon nanotubes” Isayev, A. I.; Kumar, R.; Lewis, T. M. Polymer 2009, 50, 250–260.

    Article  CAS  Google Scholar 

  61. “CH-π Interactions as the Driving Force for Silicone-Based Nanocomposites with Exceptional Properties” Beigbender, A.; Linares, M.; Devalckenaere, M.; Degee, P.; Claes, M.; Deljonne, D.; Lazzaroni, R.; Dubois, P. Adv. Mater. 2008, 20, 1003–1007.

    Article  Google Scholar 

  62. “Noncovalent Functionalization as an Alternative to Oxidative Acid Treatment of Single Wall Carbon Nanotubes with Applications for Polymer Composites” Simmons, T. J.; Bult, J.; Hashim, D. P.; Linhardt, R. J.; Ajayan, P. M. ACS Nano 2009, 3, 865–870.

    Article  CAS  Google Scholar 

  63. “Thermal Degradation Chemistry of Alkyl Quaternary Ammonium Montmorillonite” Xie, W.; Gao, Z.; Pan, W-P.; Hunter, D.; Singh, A.; Vaia, R. Chem. Mater. 2001, 13, 2979–2990.

    Article  CAS  Google Scholar 

  64. “Thermal decomposition of alkyl ammonium ions and its effect on surface polarity of organically treated nanoclay” Dharaiya, D.; Jana, S. C. Polymer 2005, 46, 10139–10147.

    Article  CAS  Google Scholar 

  65. “Thermal degradation of commercially available organoclays studied by TGA-FTIR” Cervantes-Uc, J. M.; Cauich-Rodriguies, J. W.; Vasquez-Torres, H.; Garfias-Mesias, L. F.; Paul, D. R. Thermochimica Acta 2007, 457, 92–102.

    Article  CAS  Google Scholar 

  66. “Organoclay degradation in melt processed polyethylene nanocomposites” Shah, R. K.; Paul, D. R. Polymer 2006, 47, 4084.

    Google Scholar 

  67. “Influence of compatibilizer degradation on formation and properties of PA6/organoclay nanocomposites” Monticelli, O.; Musina, Z.; Frache, A.; Bullucci, F.; Camino, G.; Russo, S. Polym. Degrad. Stab. 2007, 92, 370–378.

    Article  CAS  Google Scholar 

  68. “Effect of organoclay purity and degradation on nanocomposite performance, Part 1: Surfactant degradation” Cui, L.; Khramov, D. M.; Dielawski, C. W.; Hunter, D. L.; Yoon, P. J.; Paul, D. R. Polymer 2008, 49, 3751–3761.

    Article  CAS  Google Scholar 

  69. “Effect of organoclay purity and degradation on nanocomposite performance, Part 2: Morphology and properties of nanocomposites” Cui, L.; Hunter, D. L.; Yoon, P. J.; Paul, D. R. Polymer 2008, 49, 3762–3769.

    Article  CAS  Google Scholar 

  70. “Polymer/Layered Silicate Nanocomposites from Thermally Stable Trialkylimidazolium-Treated Montmorillonite” Gilman, J. W.; Awad, W. H.; Davis, R. D.; Shields, J.; Harris, R. H. Jr.; Davis, C.; Morgan, A. B.; Sutto, T. E.; Callahan, J.; Trulove, P. C.; DeLong, H. C. Chem. Mater. 2002, 14, 3776.

    Article  CAS  Google Scholar 

  71. “Melt-Processable Syndiotactic Polystyrene/Montmorillonite Nanocomposites” Wang, Z. M.; Chung, T. C.; Gilman, J. W. Manias, E. J. Polym. Sci. Part B. 2003, 41, 3173–3187.

    Article  CAS  Google Scholar 

  72. “Synthesis of imidazolium salts and their application in epoxy montmorillonite nanocomposites” Langat, J.; Bellayer, S.; Hudrlik, P.; Hudrlik, A.; Maupin, P. H.; Gilman, J. W.; Raghavan, D. Polymer 2006, 47, 6698–6709.

    Article  CAS  Google Scholar 

  73. “Benzimidazolium surfactations for modifications of clays for use with styrenic polymers” Costache, M. C.; Heidecker, M. J.; Manias, E.; Gupta, R. K.; Wilkie, C. A. Polym. Degrad. Stab. 2007, 92, 1753–1762.

    Article  CAS  Google Scholar 

  74. “Thermal Stability of Quaternary Phosphonium Modified Montmorillonites” Xie, W.; Xie, R.; Pan, W-P.; Hunter, D.; Koene, B.; Tan, L-S.; Vaia, R. Chem. Mater. 2002, 14, 4837–4845.

    Article  CAS  Google Scholar 

  75. “Poly(propylene)/organoclay nanocomposite formation: Influence of compatibilizer functionality and organoclay modification” Reichert, P.; Nitz, H.; Klinke, S.; Brandsch, R.; Thomann, R.; Mulhaupt, R. Macromol. Mater. Eng. 2000, 275, 8–17.

    Article  CAS  Google Scholar 

  76. “Swelling behavior of montmorillonite cation exchanged for ω-amino acids by ε-caprolactam” Usuki, A.; Kawasumi, M.; Kojima, Y.; Okada, A.; Kurauchi, T.; Kamigaito, O. J. Mater. Res. 1993, 8, 1174–1178.

    Article  CAS  Google Scholar 

  77. “New Polylactide/Layered Silicate Nanocomposites: Role of Organoclays” Maiti, P.; Yamada, K.; Okamoto, M.; Ueda, K.; Okamoto, K. Chem. Mater. 2002, 14, 4654–4661.

    Article  CAS  Google Scholar 

  78. Self-Assembly of Alkylammonium Chains on Montmorillonite: Effect of Chain Length, Head Group Structure, and Cation Exchange Capacity” Heinz, H.; Vaia, R. A.; Krishnamoorti, R.; Farmer, B. L. Chem. Mater. 2007, 19, 59–68.

    Article  CAS  Google Scholar 

  79. “Polyamide- and polycarbonate-based nanocomposites prepared from thermally stable imidazolium organoclay” Cui, L.; Bara, J. E.; Brun, Y.; Yoo, Y.; Yoon, P. J.; Paul, D. R. Polymer 2009, 50, 2492–2502.

    Article  CAS  Google Scholar 

  80. “Ionic Liquid Modification of Layered Silicates for Enhanced Thermal Stability” Byrne, C.; McNally, T. Macromol. Rapid Commun. 2007, 28, 780–794.

    Article  CAS  Google Scholar 

  81. “Phosphonium-based layered silicate—Poly(ethylene terephthalate) nanocomposites: Stability, thermal and mechanical properties” Patro, T. Umasankar; Khakhar, Devang V.; Misra, Ashok J. App. Polym. Sci. 2009, 113, 1720 – 1732.

    Article  Google Scholar 

  82. “A flammability performance comparison between synthetic and natural clays in polystyrene nanocomposites” Morgan, A. B.; Chu, L-L.; Harris, J. D. Fire Mater. 2005, 29, 213–229.

    Article  CAS  Google Scholar 

  83. “A study of the flammability reduction mechanism of polystyrene-layered silicate nanocomposite: layered silicate reinforced carbonaceous char” Gilman, J. W.; Harris, R. H.; Shields, J. R.; Kashiwagi, T.; Morgan, A. B. Polym. Adv. Technol. 2006, 17, 263–271.

    Article  CAS  Google Scholar 

  84. “Maleated polypropylene OMMT nanocomposite: Annealing, structural changes, exfoliated and migration” Tang, Y.; Lewin, M. Polym. Degrad. Stab. 2006, 92, 53–60.

    Article  Google Scholar 

  85. “Nanocomposites at elevated temperatures: migration and structural changes” Lewin, M.; Pearce, E. M.; Levon, K.; Mey-Marom, A.; Zammarano, M.; Wilkie, C. A.; Jang, B. N. Polym. Adv. Technol. 2006, 17, 226–234.

    Article  CAS  Google Scholar 

  86. “Flammability Properties of Polymer-Layered Silicate Nanocomposites. Polypropylene and Polystyrene Nanocomposites” Gilman, J. W.; Jackson, C. L.; Morgan, A. B.; Harris, R.; Manias, E.; Giannelis, E. P.; Wuthenow, M.; Hilton, D.; Phillips, S. H. Chem. Mater. 2000, 12, 1866–1873.

    Article  CAS  Google Scholar 

  87. “LDPE/Mg-Al layered double hydroxide nanocomposite: Thermal and flammability properties” Costa, R. R.; Wagenknecht, U.; Heinrich, G. Polym. Degrad. Stab. 2007, 92, 1813–1823.

    Article  CAS  Google Scholar 

  88. “Comparative study on the flammability of polyethylene modified with commercial fire retardants and a zinc aluminum oleate layered double hydroxide” Manzi-Nshuti, C.; Hossenlopp, J. M.; Wilkie, C. A. Polym. Degrad. Stab. 2009, 94, 782–788.

    Article  CAS  Google Scholar 

  89. “Flame-retarded polystyrene: Investigating chemical interactions between ammonium polyphosphate and MgAl layered double hydroxide” Nyambo, C.; Kandare, E.; Wang, D.; Wilkie, C. A. Polym. Degrad. Stab. 2008, 93, 1656–1663.

    Article  CAS  Google Scholar 

  90. “Epoxy nanocomposites based on the synthetic alpha-zirconium phosphate layer structure” Sue, H. J.; Gam, K. T.; Bestaoui, N.; Spurr, N.; Clearfield, A. Chem. Mater. 2004, 16, 242–249.

    Article  CAS  Google Scholar 

  91. “Effect of nanoplatelet aspect ratio on mechanical properties of epoxy nanocomposites” Boo, W-J.; Sun, L.; Warren, G. L.; Moghbelli, E.; Pham, H.; Clearfield, A.; Sue, H-J. Polymer 2007, 48, 1075–1082.

    Article  CAS  Google Scholar 

  92. “Mechanical Reinforcement of Polymers Using Carbon Nanotubes” Coleman, J. N.; Khan, U.; Gun’ko, Y. K. Advanced Materials 2006, 18, 689–706.

    Article  CAS  Google Scholar 

  93. “The incorporation of carbon nanofibres to enhance the properties of self-reinforced, single polymer composites” Hine, P.; Broome, V.; Ward, I. Polymer 2005, 46, 10936–10944.

    Article  CAS  Google Scholar 

  94. “Control of Carbon Nanotube-Surface Interactions: The Role of Grafted Polymers” Nap, R.; Szleifer, I. Langmuir 2005, 21, 12072–12075.

    Article  CAS  Google Scholar 

  95. “Toolbox for Dispersing Carbon Nanotubes into Polymers to Get Conductive Nanocomposites” Grossiord, N.; Loos, J.; Regev, O.; Koning, C. E. Chem. Mater. 2006, 18, 1089–1099.

    Article  CAS  Google Scholar 

  96. “A new approach to functionalize multi-wall carbon nanotubes by the use of functional polymers” Hong, C-Y.; You, Y-Z.; Pan, C-Y. Polymer 2006, 47, 4300–4309.

    Article  CAS  Google Scholar 

  97. “Covalent Surface Chemistry of Single-Walled Carbon Nanotubes” Bannerjee, S.; Hemraj-Benny, T.; Wong, S. S. Advanced Materials 2006, 17, 17–29.

    Article  Google Scholar 

  98. “Effects of Surface Modification, Carbon Nanofiber Concentration, and Dispersion Time on the Mechanical Properties of Carbon-Nanofiber-Polycarbonate Composites” Gao, Y.; He, P.; Lian, J.; Schulz, M. J.; Zhao, J.; Wang, W.; Wang, X.; Zhang, J.; Zhou, X.; Shi, D. J. App. Polym. Sci. 2007, 103, 3792–3797.

    Article  CAS  Google Scholar 

  99. “Photophysical properties of noncovalently functionalized multi-walled carbon nanotubes with poly-para-hydroxystyrene” Park, Sungjin; Huh, Jung Oh; Kim, Nam Gwang; et al. Carbon 2008, 46, 714 –716.

    Article  CAS  Google Scholar 

  100. “Noncovalent Functionalization as an Alternative to Oxidative Acid Treatment of Single Wall Carbon Nanotubes with Applications for Polymer Composites” Simmons, T. J.; Bult, J.; Hashim, D. P.; Linhardt, R. J.; Ajayan, P. M. ACS Nano 2009, 3, 865–870.

    Article  CAS  Google Scholar 

  101. ‘Polyhedral oligomeric silsesquioxane(POSS)-based polymers’, J. J. Schwab, J. D. Lichtenhan 12(10–11):707–713 (1998).

    Article  CAS  Google Scholar 

  102. “Special Control of Chemistry on the Inside and Outside of Inorganic Nanocrystals” Murphy, C. J. ACS Nano 2009, 3, 770–774.

    Article  CAS  Google Scholar 

  103. “Applications of hybrid organic-inorganic nanocomposites” Sanchez, C.; Julian, B.; Belleville, P.; Popall, M. J. Mater. Chem. 2005, 15, 3559–3592.

    Article  CAS  Google Scholar 

  104. “Nanostructured Organic-Inorganic Composite Materials by Twin Polymerization of Hybrid Monomers” Spange, S.; Grund, S. Adv. Mater. 2009, 21, 2111–2116.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The author would like to thank the editors of this book for giving him an opportunity to write this chapter. Funding for the Integrated Coating System and Inorganic–Organic Hybrid work discussed in this chapter was provided by the Ohio Department of Development 3rd Frontier Research Commercialization Program (ODOD Grant Tech 09-007) and Air Force Research Laboratory “Aerospace Organic Matrix Composite Materials/Hybrids for Extreme Environments” (AFRL RXBC FA8650-05-D-5052) program, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander B. Morgan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Morgan, A.B. (2012). Additives, Nanocomposites, and Barrier Coatings. In: Pochiraju, K., Tandon, G., Schoeppner, G. (eds) Long-Term Durability of Polymeric Matrix Composites. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9308-3_2

Download citation

Publish with us

Policies and ethics