Skip to main content

Type I Collagen-Mediated Changes in Gene Expression and Function of Prostate Cancer Cells

  • Chapter
The Biology of Skeletal Metastases

Part of the book series: Cancer Treatment and Research ((CTAR,volume 118))

Abstract

Increasingly it is recognized that the extracellular matrix (ECM) plays a critical role in the normal development and differentiated phenotype of cells and tissues (Lee et al, 1999; Bokel et al, 2002). Engagement of ECM molecules by cells through surface receptors, including integrins, results in the activation of signaling pathways along with specific changes in gene expression. Intracellular signals direct proliferation, survival, migration, invasive potential and differentiation (Giancotti et al, 1999). A well characterized example of ECM influence over cell phenotype and gene expression is in the control of mammary epithelial cell differentiation by the particular composition of the ECM (Lee et al, 1999; Hansen et al, 2000). Mammary epithelial cells plated onto laminin-1 matrices express proteins associated with milk production, including ß-casein, whereas cells plated onto type I collagen do not. Additionally, laminin-1 confers on mammary epithelial cells the capability of being able to respond fully to prolactincontrolled expression of milk proteins. Cells plated onto type I collagen, however, fail to respond (Streuli et al, 1999). Another familiar example of ECM control over cell differentiation and gene expression occurs during osteoblast differentiation. Early studies indicated that contact with type I collagen is required for normal differentiation and eventual matrix secretion and mineralization (Gronowicz et al, 1994; Takeuchi et al, 1997). Subsequent studies showed that type I collagen directs osteoblast differentiation by influencing the activity of a specific transcription factor Cbfal, also called Runx2, associated with transcriptional activation of a series of genes associated with osteoblast formation (Xiao et al, 1998). The α2β1 integrin serves as the major molecular conduit that mediates type I collagen-dependent osteoblast maturation (Gronowicz et al, 1994; Takeuchi et al, 1997; Xiao et al, 1998). Cbfal/Runx2 activity, in response to type I collagen binding to the α2β1 integrin, is controlled post-translationally by phosphorylation by MAPK (Xiao et al, 2000). These two examples illustrate the importance of the ECM-directed gene expression for cellular differentiation, and highlight the convergence of intracellular signals that are required for phenotypic and genotypic control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akisawa, N., Nishimori, I., Iwamura T., Onishi, S. and Hollingsworth, M.A. (1999) High levels of ezrin expressed by human pancreatic adenocarcinoma cell lines with high metastatic potential. Biochemical and Biophysical Research Communications, 258, 395–400.

    Article  PubMed  CAS  Google Scholar 

  • Alizadeh, A.A., Eisen, M.B., Davis, R.E., Ma, C., Lossos, I.S., Rosenwald, A., Boldrick, J.C., Sabet, H., Tran, T., Yu, X., Powell, J.I., Yang, L., Marti, G.E., Moore, T., Hudson, J., Jr., Lu, L., Lewis, D.B., Tibshirani, R., Sherlock, G., Chan, W.C., Greiner, T.C., Weisenburger, D.D., Armitage, J.O., Warnke, R., Staudt, L.M. et al. (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503–11.

    Article  PubMed  CAS  Google Scholar 

  • Amler, L.C., Agus, D.B., LeDuc, C., Sapinoso, M.L., Fox, W.D., Kern, S., Lee, D., Wang, V., Leysens, M., Higgins, B., Martin, J., Gerald, W., Dracopoli, N., Cordon-Cardo, C., Scher, H.I. and Hampton, G.M. (2000) Dysregulated expression of androgen-responsive and nonresponsive genes in the androgen-independent prostate cancer xenograft model CWR22-R1. Cancer Research 60, 6134–41.

    PubMed  CAS  Google Scholar 

  • Bateman, A. and Bennett, H.P. (1998) Granulins: the structure and function of an emerging family of growth factors. Journal of Endocrinology 158, 145–51.

    Article  PubMed  CAS  Google Scholar 

  • Bokel, C. and Brown, N.H. (2002) Integrins in development: moving on, responding to, and sticking to the extracellular matrix. Dev Cell 3,311–21.

    Article  PubMed  CAS  Google Scholar 

  • Brooks, J.D. (2002) Microarray analysis in prostate cancer research. Current Opinions in Urology, 12, 395–9.

    Article  Google Scholar 

  • Bubendorf, L., Kolmer, M., Kononen, J., Koivisto, P., Mousses, S., Chen, Y., Mahlamaki, E., Schraml, P., Moch, H., Willi, N., Elkahloun, A.G., Pretlow, T.G., Gasser, T.C., Mihatsch, M.J., Sauter, G. and Kallioniemi, O.P. (1999a) Hormone therapy failure in human prostate cancer: analysis by complementary DNA and tissue microarrays. Journal of the National Cancer Institute 91, 1758–64.

    Article  PubMed  CAS  Google Scholar 

  • Bubendorf, L., Kononen, J., Koivisto, P., Schraml, P., Moch, H., Gasser, T.C., Willi, N., Mihatsch, M.J., Sauter, G. and Kallioniemi, O.P. (1999b) Survey of gene amplifications during prostate cancer progression by high-throughout fluorescence in situ hybridization on tissue microarrays. Cancer Research 59, 803–6.

    PubMed  CAS  Google Scholar 

  • Calaluce, R., Kunkel, M.W., Watts, G.S., Schmelz, M., Hao, J., Barrera, J., Gleason-Guzman, M., Isett, R., Fitchmun, M., Bowden, G.T., Cress, A.E., Futscher, B.W. and Nagle, R.B. (2001) Laminin-5-mediated gene expression in human prostate carcinoma cells. Molecular Carcinoma 30, 119–29.

    Article  CAS  Google Scholar 

  • Celis, J.E., Kruhoffer, M., Gromova, I., Frederiksen, C., Ostergaard, M., Thykjaer, T., Gromov, P., Yu, J., Palsdottir, H., Magnusson, N. and Orntoft, T.F. (2000) Gene expression profiling: monitoring transcription and translation products using DNA microarrays and proteomics. FEBS Lett, 480, 2–16.

    Article  PubMed  CAS  Google Scholar 

  • Cussenot, O. (1997) Growth factors and prostatic tumors. Ann Endocrinology 58, 370–80.

    CAS  Google Scholar 

  • Dawson, D.M., Lawrence, E.G., MacLennan, G.T., Amini, S.B., Kung, H.J., Robinson, D., Resnick, M.I., Kursh, E.D., Pretlow, T.P. and Pretlow, T.G. (1998) Altered expression of RET proto-oncogene product in prostatic intraepithelial neoplasia and prostate cancer. Journal of the National Cancer Institute 90, 519–23.

    Article  PubMed  CAS  Google Scholar 

  • Der, S.D., Zhou, A., Williams, B.R. and Silverman, R.H. (1998) Identification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays. Proceedings of the National Academy of Sciences USA 95, 15623–8.

    Article  CAS  Google Scholar 

  • DeRisi, J.L. and Iyer, V.R. (1999) Genomics and array technology. Current Opinions in Oncology 11, 76–9.

    Article  CAS  Google Scholar 

  • Dhanasekaran, S.M., Barrette, T.R., Ghosh, D., Shah, R., Varambally, S., Kurachi, K., Pienta, K.J., Rubin, M.A. and Chinnaiyan, A.M. (2001) Delineation of prognostic biomarkers in prostate cancer. Nature 412, 822–6.

    Article  PubMed  CAS  Google Scholar 

  • Durick, K., Wu, R.Y., Gill, G.N. and Taylor, S.S. (1996) Mitogenic signaling by Ret/ptc2 requires association with enigma via a LIM domain. Journal of Biological Chemistry 271, 12691–4.

    Article  PubMed  CAS  Google Scholar 

  • Dyrskjot, L., Thykjaer, T., Kruhoffer, M., Jensen, J.L., Marcussen, N., Hamilton-Dutoit, S., Wolf, H. and TF, O.R. (2003) Identifying distinct classes of bladder carcinoma using microarrays. Nat Genet 33, 90–6.

    Article  PubMed  CAS  Google Scholar 

  • Elek, J., Park, K.H. and Narayanan, R. (2000) Microarray-based expression profiling in prostate tumors. In Vivo 14, 173–82.

    PubMed  CAS  Google Scholar 

  • Ganoth, D., Bornstein, G., Ko, T.K., Larsen, B., Tyers, M., Pagano, M. and Hershko, A. (2001) The cell-cycle regulatory protein Cksl is required for SCF(Skp2)-mediated ubiquitinylation of p27. Nat Cell Biol 3, 321–4.

    Article  PubMed  CAS  Google Scholar 

  • Giancotti, F.G. and Ruoslahti, E. (1999) Integrin signaling. Science, 285, 1028–32.

    Article  PubMed  CAS  Google Scholar 

  • Gill, G.N. (1995) The enigma of LIM domains. Structure 3, 1285–1289.

    Article  PubMed  CAS  Google Scholar 

  • Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C, Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D. and Lander, E.S. (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–7.

    Article  PubMed  CAS  Google Scholar 

  • Gronowicz, G.A. and Derome, M.E. (1994) Synthetic peptide containing Arg-Gly-Asp inhibits bone formation and resorption in a mineralizing organ culture system of fetal rat parietal bones. Journal of Bone and Mineral Research 9, 193–201.

    Article  PubMed  CAS  Google Scholar 

  • Guise T.A. and Mundy G.R. (1998) Cancer and bone. Endocrinology Review 19, 18–54.

    Article  CAS  Google Scholar 

  • Hansen, R.K. and Bisseil, M.J. (2000) Tissue architecture and breast cancer: the role of extracellular matrix and steroid hormones. Endocr Relat Cancer 7, 95–113.

    Article  PubMed  CAS  Google Scholar 

  • Haq, M., Goltzman, D., Tremblay, G. and Brodt, P. (1992) Rat prostate adenocarcinoma cells disseminate to bone and adhere preferentially to bone marrow-derived endothelial cells. Cancer Research 52, 4613–9.

    PubMed  CAS  Google Scholar 

  • He, Z.a.B.A. (1999) Progranulin gene expression regulates epithelial cell growth and promotes tumor growth in vivo. Cancer Research 59, 3222–3229.

    PubMed  CAS  Google Scholar 

  • Herrlich, P., Sleeman, J., Wainwright, D., Konig, H., Sherman, L., Hilberg, F. and Ponta, H. (1998) How tumor cells make use of CD44. Cell Adhes Commun 6, 141–7.

    Article  PubMed  CAS  Google Scholar 

  • Hippo, Y., Yashiro, M., Ishii, M., Taniguchi, H., Tsutsumi, S., Hirakawa, K., Kodama, T. and Aburatani, H. (2001) Differential gene expression profiles of scirrhous gastric cancer cells with high metastatic potential to peritoneum or lymph nodes. Cancer Research 61, 889–95.

    PubMed  CAS  Google Scholar 

  • Hullinger, T.G., McCauley, L.K., DeJoode, M.L. and Somerman, M.J. (1998) Effect of bone proteins on human prostate cancer cell lines in vitro. The Prostate 36, 14–22.

    Article  PubMed  CAS  Google Scholar 

  • Jacob, K., Webber, M., Benayahu, D. and Kleinman, H.K. (1999) Osteonectin promotes prostate cancer cell migration and invasion: a possible mechanism for metastasis to bone. Cancer Research 59, 4453–7.

    PubMed  CAS  Google Scholar 

  • Jiang, W.G. and Hiscox, S. (1996) Cytokine regulation of ezrin expression in the human colon cancer cell line HT29. Anticancer Research 16, 861–5.

    PubMed  CAS  Google Scholar 

  • Khan, J., Bittner, M.L., Saal, L.H., Teichmann, U., Azorsa, D.O., Gooden, G.C., Pavan, W.J., Trent, J.M. and Meltzer, P.S. (1999a) cDNA microarrays detect activation of a myogenic transcription program by the PAX3-FKHR fusion oncogene. Proceedings of the National Academy of Sciences USA 96, 13264–9.

    Article  CAS  Google Scholar 

  • Khan, J., Saal, L.H., Bittner, M.L., Chen, Y., Trent, J.M. and Meltzer, P.S. (1999b) Expression profiling in cancer using cDNA microarrays. Electrophoresis 20, 223–9.

    Article  PubMed  CAS  Google Scholar 

  • Kiefer, J.A. and Farach-Carson, M.C. (2001) Type I collagen-mediated proliferation of PC3 prostate carcinoma cell line: implications for enhanced growth in the bone microenvironment. Matrix Bioliogy 20, 429–37.

    Article  CAS  Google Scholar 

  • Klein, C.E., Dressel, D., Steinmayer, T., Mauch, C., Eckes, B., Krieg, T., Bankert, R.B. and Weber, L. (1991) Integrin alpha 2 beta 1 is upregulated in fibroblasts and highly aggressive melanoma cells in three-dimensional collagen lattices and mediates the reorganization of collagen I fibrils. Journal of Cellular Biology 115, 1427–36.

    Article  CAS  Google Scholar 

  • Koeneman, K.S., Yeung, F. and Chung, L.W. (1999) Osteomimetic properties of prostate cancer cells: a hypothesis supporting the predilection of prostate cancer metastasis and growth in the bone environment. The Prostate, 39, 246–61.

    Article  PubMed  CAS  Google Scholar 

  • Kostenuik, P.J., Sanchez-Sweatman, O., Orr, F.W. and Singh, G. (1996) Bone cell matrix promotes the adhesion of human prostatic carcinoma cells via the alpha 2 beta 1 integrin. Clinical Experimental Metastasis 14,19–26.

    Article  PubMed  CAS  Google Scholar 

  • Kostenuik, P.J., Singh, G. and Orr, F.W. (1997) Transforming growth factor beta upregulates the integrin-mediated adhesion of human prostatic carcinoma cells to type I collagen. Clinical Experimental Metastasis 15, 41–52.

    Article  PubMed  CAS  Google Scholar 

  • Lang, S.H., Miller, W.R., Duncan, W. and Habib, F.K. (1994) Production and response of human prostate cancer cell lines to granulocyte macrophage-colony stimulating factor. International Journal of Cancer 59, 235–41.

    Article  CAS  Google Scholar 

  • Lecrone, V., Li, W., Devoll, R.E., Logothetis, C. and Farach-Carson, M.C. (2000) Calcium signals in prostate cancer cells: specific activation by bone-matrix proteins. Cell Calcium, 27, 35–42.

    Article  PubMed  CAS  Google Scholar 

  • Lee, Y.J. and Streuli, C.H. (1999) Extracellular matrix selectively modulates the response of mammary epithelial cells to different soluble signaling ligands. Journal of Biological Chemistry 274, 22401–8.

    Article  PubMed  CAS  Google Scholar 

  • Lehr, J.E. and Pienta, K.J. (1998) Preferential adhesion of prostate cancer cells to a human bone marrow endothelial cell line. Journal of the National Cancer Institute 90, 118–23.

    Article  PubMed  CAS  Google Scholar 

  • Markert, J.M., Fuller, CM., Gillespie, G.Y., Bubien, J.K., McLean, L.A., Hong, R.L., Lee, K., Gullans, S.R., Mapstone, T.B. and Benos, D.J. (2001) Differential gene expression profiling in human brain tumors. Physiol Genomics 5, 21–33.

    PubMed  CAS  Google Scholar 

  • Mazurek, S., Grimm, H., Wilker, S., Leib, S. and Eigenbrodt, E. (1998) Metabolic characteristics of different malignant cancer cell lines. Anticancer Research 18, 3275–82.

    PubMed  CAS  Google Scholar 

  • Mundy, G.R. (1997) Mechanisms of bone metastasis. Cancer 80, 1546–56.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, P.S., Clegg, N., Arnold, H., Ferguson, C., Bonham, M., White, J., Hood, L. and Lin B. (2002) The program of androgen-responsive genes in neoplastic prostate epithelium. Proceedings of the National Academy of Sciences USA, 99, 11890–5.

    Article  CAS  Google Scholar 

  • Newell, M.K., Harper, M.E., Fortner, K., Desbarats, J., Russo, A. and Huber, S.A. (1999) Does the oxidative/glycolytic ratio determine proliferation or death in immune recognition? Ann N Y Acad Sci 887, 77–82.

    Article  PubMed  CAS  Google Scholar 

  • Newsholme, E.A. and Board, M. (1991) Application of metabolic-control logic to fuel utilization and its significance in tumor cells. Adv Enzyme Regul 31, 225–46.

    Article  PubMed  CAS  Google Scholar 

  • Newsholme, E.A., Crabtree, B. and Ardawi, M.S. (1985) The role of high rates of glycolysis and glutamine utilization in rapidly dividing cells. Biosci Rep 5, 393–400.

    Article  PubMed  CAS  Google Scholar 

  • Park, C.C., Bissell, M.J. and Barcellos-Hoff, M.H. (2000) The influence of the microenvironment on the malignant phenotype. Mol Med Today 6, 324–9.

    Article  PubMed  CAS  Google Scholar 

  • Pauli, B.U. and Lee, C.L. (1988) Organ preference of metastasis. The role of organspecifically modulated endothelial cells. Laboratory Investigations 58, 379–87.

    CAS  Google Scholar 

  • Ponta, H., Wainwright, D.and Herrlich, P. (1998) The CD44 protein family. International Journal Biochemistry and Cell Biology 30, 299–305.

    Article  CAS  Google Scholar 

  • Ranganathan, R. and Ross, E.M. (1997) PDZ domain proteins: scaffolds for signaling complexes. Current Biology 7, R770–3.

    Article  PubMed  CAS  Google Scholar 

  • Rhodes, D.R., Barrette, T.R., Rubin, M.A., Ghosh, D. and Chinnaiyan, A.M. (2002) Metaanalysis of microarrays: interstudy validation of gene expression profiles reveals pathway dysregulation in prostate cancer. Cancer Research 62, 4427–33.

    PubMed  CAS  Google Scholar 

  • Ridley, R.C., Xiao, H., Hata, H., Woodliff, J., Epstein, J. and Sanderson R.D. (1993) Expression of syndecan regulates human myeloma plasma cell adhesion to type I collagen. Blood 81, 767–74.

    PubMed  CAS  Google Scholar 

  • Romanov, V.l. and Goligorsky, M.S. (1999) RGD-recognizing integrins mediate interactions of human prostate carcinoma cells with endothelial cells in vitro. Prostate, 39, 108–18.

    Article  PubMed  CAS  Google Scholar 

  • Rudzki, Z. and Jothy, S. (1997) CD44 and the adhesion of neoplastic cells. Molecular Pathology 50, 57–71.

    Article  PubMed  CAS  Google Scholar 

  • Sasaki, H., Ide, N., Fukai, I., Kiriyama, M., Yamakawa, Y. and Fujii, Y. (2002) Gene expression analysis of human thymoma correlates with tumor stage. International Journal of Cancer 101,342–7.

    Article  CAS  Google Scholar 

  • Sharpe, W.a.M.J. (1942) Reaction of bone to metastsis from carcinoma of the breast and prostate. Arch Pathol 17, 312–325.

    Google Scholar 

  • Stevens, J.W., Palechek, P.L., Griebling, T.L., Midura, R.J., Rokhlin, O.W. and Cohen, M.B. (1996) Expression of CD44 isoforms in human prostate tumor cell lines. Prostate, 28, 153–61.

    Article  PubMed  CAS  Google Scholar 

  • Streuli, C.H. and Gilmore, A.P. (1999) Adhesion-mediated signaling in the regulation of mammary epithelial cell survival. Journal of Mammary Gland Biol Neoplasia 4, 183–91.

    Article  CAS  Google Scholar 

  • Takeuchi, Y., Suzawa, M., Kikuchi, T., Nishida, E., Fujita, T. and Matsumoto, T. (1997) Differentiation and transforming growth factor-beta receptor down-regulation by collagen-alpha2betal integrin interaction is mediated by focal adhesion kinase and its downstream signals in murine osteoblastic cells. Journal of Biological Chemistry 272, 29309–16.

    Article  PubMed  CAS  Google Scholar 

  • Termine, J.D.a.R., P. G (1996) “Bone Matrix Proteins and the Mineralization Process” In Prime on the Metabolic Bone Diseases and Disorders of Mineral Metabolism (ed. M.J. Favus). Philadelphia: Lippincott-Raven.

    Google Scholar 

  • Thalmann, G.N., Sikes, R.A., Devoll, R.E., Kiefer, J.A., Markwalder, R., Klima, I., FarachCarson, C.M., Studer, U.E. and Chung, L.W. (1999) Osteopontin: possible role in prostate cancer progression. Clinical Cancer Research 5, 2271–7.

    PubMed  CAS  Google Scholar 

  • Thomas, G., Hall, M.N. (1997) TOR signalling and control of cell growth. Current Opinions in Cell Biology 9, 782–7.

    Article  CAS  Google Scholar 

  • Tlsty, T.D. (1998) Cell-adhesion-dependent influences on genomic instability and carcinogenesis. Current Opinions in Cell Biology 10, 647–53.

    Article  CAS  Google Scholar 

  • Vaarala, M.H., Porvari, K., Kyllonen, A. and Vihko, P. (2000) Differentially expressed genes in two LNCaP prostate cancer cell lines reflecting changes during prostate cancer progression. Laboratory Investigations 80, 1259–68.

    Article  CAS  Google Scholar 

  • Vaheri, A., Carpen, O., Heiska, L., Heiander, T.S., Jaaskelainen, J., Majander-Nordenswan, P., Sainio, M., Timonen, T. and Turunen, O. (1997) The ezrin protein family: membranecytoskeleton interactions and disease associations. Current Opinions in Cell Biology 9, 659–66.

    Article  CAS  Google Scholar 

  • Watson, M.A., Perry, A., Budhjara, V., Hicks, C., Shannon, W.D. and Rich, K.M. (2001) Gene expression profiling with oligonucleotide microarrays distinguishes World Health Organization grade of oligodendrogliomas. Cancer Research 61, 1825–9.

    PubMed  CAS  Google Scholar 

  • Xiao, G., Jiang, D., Thomas, P., Benson, M.D., Guan, K., Karsenty, G. and Franceschi R.T. (2000) MAPK pathways activate and phosphorylate the osteoblast-specific transcription factor, Cbfal. Journal of Biological Chemistry 275, 4453–9.

    Article  PubMed  CAS  Google Scholar 

  • Xiao, G., Wang, D., Benson, M.D., Karsenty, G. and Franceschi, R.T. (1998) Role of the alpha2-integrin in osteoblast-specific gene expression and activation of the Osf2 transcription factor. Journal of Biological Chemistry 213, 32988–94.

    Article  Google Scholar 

  • Xu, J., Stolk, J.A., Zhang, X., Silva, S.J., Houghton, R.L., Matsumura, M., Vedvick, T.S., Leslie, K.B., Badaro, R. and Reed, S.G. (2000) Identification of differentially expressed genes in human prostate cancer using subtraction and microarray. Cancer Research 60, 1677–82.

    PubMed  CAS  Google Scholar 

  • Zanocco-Marani, T., Bateman, A., Romano, G., Valentinis, B., He, Z.H. and Baserga, R. (1999) Biological activities and signaling pathways of the granulin/epithelin precursor. Cancer Research 59, 5331–40.

    PubMed  CAS  Google Scholar 

  • Zhou, J., Zhao, L.Q., Xiong, MM., Wang, X.Q., Yang, G.R., Qiu, Z.L., Wu, M. and Liu, Z.H. (2003) Gene expression profiles at different stages of human esophageal squamous cell carcinoma. World Journal of Gastroenterology 9, 9–15.

    PubMed  CAS  Google Scholar 

  • Zhu, H., Cong, J.P., Mamtora, G., Gingeras, T. and Shenk, T. (1998) Cellular gene expression altered by human cytomegalovirus: global monitoring with oligonucleotide arrays. Proceedings of the National Academy of Sciences USA, 95,14470–5.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kiefer, J., Alexander, A., Farach-Carson, M.C. (2004). Type I Collagen-Mediated Changes in Gene Expression and Function of Prostate Cancer Cells. In: Keller, E.T., Chung, L.W.K. (eds) The Biology of Skeletal Metastases. Cancer Treatment and Research, vol 118. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9129-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9129-4_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4803-0

  • Online ISBN: 978-1-4419-9129-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics