Skip to main content

New Quantum Nanostructures

Boron-based metallic nanotubes and geometric phases in carbon nanocones

  • Chapter
Quantum Computing and Quantum Bits in Mesoscopic Systems
  • 589 Accesses

Abstract

Several new metallic and semiconducting nanostructures may provide interesting substrates for observations involving quantum coherence. Boron-based nanotubes with beryllium atoms in the hexagonal faces should exhibit uniformly metallic properties with multiple conduction channels of disparate character. The apical dislocation in a carbon nanocone mixes the low-energy electronic states of a graphene sheet and produces a geometrically derived effective flux through the apex which suppresses the Aharonov-Bohm effect.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Iijima, Nature 354, 56 (1991).

    Article  ADS  Google Scholar 

  2. A. Rubio, J. L. Corkill, and M. L. Cohen, Phys. Rev. B 49, 5081 (1994).

    ADS  Google Scholar 

  3. X. Blase, A. Rubio, S. G. Louie, and M. L. Cohen, Europhys. Lett. 28, 335 (1994).

    Article  ADS  Google Scholar 

  4. N. G. Chopra, R. L. Luyken, K. Cheney, V. H. Crespi, M. L. Cohen, S. G. Louie, and A. Zettl, Science 269, 966 (1995).

    Article  ADS  Google Scholar 

  5. Z. Weng-Sieh, K. Cheney, N. G. Chopra, X. Blase, Y. Miyamoto, A. Rubio, M. L. Cohen, S. G. Louie, A. Zettl, and R. Gronsky, Phys. Rev. B 51, 11229 (1995)

    ADS  Google Scholar 

  6. L. A. Chernozatonskii, JETP Lett. 74, 335 (2001)

    Article  ADS  Google Scholar 

  7. I. Boustani, A. Quandt, E. Hernández and A. Rubio, J. Chem. Phys. 110, 3176 (1999)

    Article  ADS  Google Scholar 

  8. A. Quandt, A. Y. Liu, and I. Boustani, Phys. Rev. B 64, 125422 (2001).

    ADS  Google Scholar 

  9. H. T. Hall and L. A. Compton, Inorg. Chem. 4, 1213 (1965).

    Article  Google Scholar 

  10. M. P. Grumbach, O. F. Sankey, and P. F. McMillan, Phys. Rev. B 52, 15807 (1995).

    ADS  Google Scholar 

  11. Diamond-like forms have also been observed for B2O. T. Endo, T. Sato, and M. Shimada, J. Mater. Sci. Lett. 6, 683 (1987).

    Article  Google Scholar 

  12. BeB2: L. Y. Markovskii, Y. D. Kondrashev, and G. V. Kaputovskais, J. Gen. Chem. USSR 25, 1007 (1955)

    Google Scholar 

  13. BeB2: L. Y. Markovskii, Y. D. Kondrashev, and G. V. Kaputovskais, J. Gen. Chem. USSR 25. 1007 (1955)

    Article  Google Scholar 

  14. D. E. Sands, C. F. Cline, A. Zalkin. and C. L. Hoenig, Acta Cryst. 14, 309 (1961)

    Article  Google Scholar 

  15. M. S. Borovikova, V. V. Fesenko, and J. Less, Common. Metals 117, 287 (1986).

    Article  Google Scholar 

  16. J. Ihm, A. Zunger, and M. L. Cohen, J. Phys. C 12, 4409 (1979).

    Article  ADS  Google Scholar 

  17. A. Krishnan, E. Dujardin. M. M. J. Treacy. J. Hugdahl, S. Lynum. and T. W. Ebbesen, Nature 388, 451 (1997).

    Article  ADS  Google Scholar 

  18. R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Appl. Phys. Lett. 60, 2204 (1992).

    Article  ADS  Google Scholar 

  19. N. Hamada, S. Sawada, and A. Oshiyama. Phys. Rev. Lett. 68, 1579 (1992).

    Article  ADS  Google Scholar 

  20. B. I. Dunlap and C. T. White. Phys. Rev. Lett. 68, 631 (1992).

    Article  ADS  Google Scholar 

  21. D. P. DiVincenzo and E. J. Mele, Phys. Rev. B 29, 1685 (1983).

    ADS  Google Scholar 

  22. C. L. Kane and E. J. Mele, Phys. Rev. Lett. 78, 1932 (1997).

    Article  ADS  Google Scholar 

  23. P. E. Lammert and V. H. Crespi, Phys. Rev. B 61, 7308 (2000). Beware a different convention regarding A/B labelling.

    ADS  Google Scholar 

  24. P. E. Lammert and V. H. Crespi. Phys. Rev. Lett. 85, 5190 (2000).

    Article  ADS  Google Scholar 

  25. C. T. White and T. N. Todorov, Nature 393, 240 (1998).

    Article  ADS  Google Scholar 

  26. S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. J. Geerligs, and C. Dekker, Nature 386, 474 (1997).

    Article  ADS  Google Scholar 

  27. A. G. Aronov and Yu. V. Sharvin, Rev. Mod. Phys. 59, 755 (1987).

    Article  ADS  Google Scholar 

  28. R. A. Webb, S. Washburn, C. P. Umbach, and R. B. Laibowitz, Phys. Rev. Lett. 54, 2696 (1985).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Crespi, V.H., Zhang, P., Lammert, P.E. (2004). New Quantum Nanostructures. In: Leggett, A.J., Ruggiero, B., Silvestrini, P. (eds) Quantum Computing and Quantum Bits in Mesoscopic Systems. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-9092-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-9092-1_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4791-0

  • Online ISBN: 978-1-4419-9092-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics