Skip to main content

Minor Histocompatibility Antigens: Molecular Barriers for Successful Tissue Transplantation

  • Chapter
Immunobiology of Organ Transplantation

Abstract

Over 50 years ago, George D. Snell originally described transplantation (histocompatibility, H) antigens as those that elicited rejection of skin or tumor grafts from genetically nonidentical donors’. In his quest to characterize the genes responsible for these antigens, he identified several unique loci. Of these, Snell found one to cause a marked rapid rejection, whereas all others led to longer rejection times. He named this antigen H2, H standing for histocompatibility. H2 is a complex of genes in mice characterized as the classical major histocompatibility complex (MHC) that binds to short antigenic peptides and presents them to T-cells. Pioneering studies on the murine H2 complex have been extended to human transplant rejection antigens, defined as human leukocyte antigens (HLA)2. Following Snell’s observations, extensive effort was made to characterize other non-H2/HLA loci responsible for histoincompatibility. Since the non-H2/HLA disparities take a longer time to cause graft rejection, they are defined as “minor” histocompatibility antigens (mH-Ag), that is, H1, H3-H61 in mice and HA1-HA8 in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Snell, G.D. (1948). Methods for the study of histocompatibility genes. J.Genet. 4987–103.

    Article  PubMed  CAS  Google Scholar 

  2. Lepage, V. and J. Dausset (1975). A non-complement-fixing antibody, segregating with HL-A3, detected on lymphocytes by immunofluorescence.Transplantation 20517–519

    Article  PubMed  CAS  Google Scholar 

  3. Graff, R. and D.W. Bailey (1973). The non-H2 histocompatibility loci and their antigens.Transplant. Rev. 1526–49

    CAS  Google Scholar 

  4. Simpson, E., D. Roopenian, and E. Goulmy (1998). Much ado about minor histocompatibility antigens.Immunol. Today 19108–112

    PubMed  CAS  Google Scholar 

  5. Mutis, T. and E. Goulmy (2002). Targeting alloreactive T-cells to hematopoietic system specific minor histocompatibility antigens for cellular immunotherapy of hematological malignancies after stem cell transplantation.Ann. Hematol.81(Suppl 2), S38–S39.

    PubMed  CAS  Google Scholar 

  6. Roopenian D., E.Y. Choi, and A. Brown (2002)The immunogenomics of minor histocompatibility antigens.Immunol. Rev. 19069–86.

    Article  Google Scholar 

  7. Malarkannan, S. (2002). Minor histocompatibility antigens: Molecular targets for adoptive cellular immunotherapy.Curr. Opin. Org Transp. 7299–304.

    Article  Google Scholar 

  8. Riddell, S.R., E.H. Warren, D. Lewinsohn, H. Mutimer, M. Topp, L. Cooperet al.(2000). Application of T-cell immunotherapy for human viral and malignant diseases.Ernst. Schering. Res. Found. Workshop 3053–73.

    PubMed  CAS  Google Scholar 

  9. Paul, W.Fundamental Immunology.Lipincott-Raven, Philadelphia.

    Google Scholar 

  10. Klein, J. (1986).Natural history of the Major Histocompatibility Complex.John Wiley and Sons, New York.

    Google Scholar 

  11. Landsteiner, K. (1945).The Specificity of Serological Reactions.Harvard University Press, Boston.

    Google Scholar 

  12. Gorer, P.A. (1936). The detection of antigenic differences in more erythrocytes by the employment of immune sera.Br. J. Exp. Pathol. 1742–50.

    CAS  Google Scholar 

  13. Gorer, P.A., S. Lyman, and G.D. Snell (1948). Studies on the genetic and antigenic basis of tumour transplantation: linkage between a histocompatibility gene and `Fused’ in mice.Proc. Roy. Soc. London B 135499–504.

    Article  Google Scholar 

  14. Snell, G.D. (1968). The H-2 locus of the mouse: Observations and speculations concerning its comparative genetics and its polymorphism.Folia Biol. (Praha) 14335–358.

    CAS  Google Scholar 

  15. Dausset, J. and J. Colombani (1967). White cells and platelets in transfusion immunology.Mod. Trends Immunol. 2314–333

    PubMed  CAS  Google Scholar 

  16. Rapaport, F.T., J. Dausset, J.M. Converse, and H.S. Lawrence (1965). Transplantation reactions in humans.Bibl. Haematol. 23134–143.

    PubMed  CAS  Google Scholar 

  17. Payne, R., R. Radvany, and C. Grumet (1975). A new second locus HL-A antigen in linkage disequilibrium with HL-A2 in cantonese chinese.Tissue Antigens 569–71.

    Article  PubMed  CAS  Google Scholar 

  18. van Rood, J.J. (2000). Double role of HLA in organ transplantation.World J. Surg. 24823–827.

    Article  CAS  Google Scholar 

  19. van Rood, J.J., A. van Leeuwen, A. Termijtelen, and J.J. Keuning (1976). The HLA linkage group.Exp. Hematol. 4237–242.

    CAS  Google Scholar 

  20. Amos, B. (1971). Genetic control of the human HL-A histocompatibility system: alternatives to the two sublocus hypothesis.Transplant Proc. 371–75.

    PubMed  CAS  Google Scholar 

  21. Bodmer, W.F., E. Albert, J.G. Bodmer, J. Dausset, F. Kissmeyer-Nielsen, R. Payneet al.(1984). Nomenclature for factors of the HLA system 1984.Immunogenetics 20591–601.

    Article  Google Scholar 

  22. Zinkernagel, R.M. and P.C. Doherty (1979). MHC-restricted cytotoxic T-cells: Studies on the biological role of polymorphic major transplantation antigens determining T-cell restriction-specificity, function, and responsiveness.Adv. Immunol. 2751–177.

    Article  PubMed  CAS  Google Scholar 

  23. Zinkernagel, R.M. and P.C. Doherty (1977). Major transplantation antigens, viruses, and specificity of surveillance T-cells.Contemp Top Immunobiol. 7179–220.

    Article  PubMed  CAS  Google Scholar 

  24. Zinkernagel, R.M. and P.C. Doherty (1977). The concept that surveillance of self is mediated via the same set of genes that determines recognition of allogenic cells.Cold Spring Harb. Symp. Quant. Biol. 41505–510.

    Article  PubMed  Google Scholar 

  25. Zinkernagel, R.M. and P.C. Doherty (1976). Virus-immune cytotoxic T-cells are sentized to by virus specifically altered structures coded for in H-2K or H-2D: A biological role for major histocompatibility antigens.Adv. Exp. Med. Biol. 66387–389.

    PubMed  CAS  Google Scholar 

  26. Zinkernagel, R.M. and P.C. Doherty (1974). Restriction of in vitro T-cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system.Nature 248701–702.

    Article  PubMed  CAS  Google Scholar 

  27. Zinkernagel, R.M. and P.C. Doherty (1974). Immunological surveillance against altered self components by sensitised T lymphocytes in lymphocytic choriomeningitis.Nature 251547–548.

    Article  PubMed  CAS  Google Scholar 

  28. Roopenian, D.C. (1992). What are minor histocompatibility loci? A new look at an old question.Immunol. Today 137–10.

    Article  PubMed  CAS  Google Scholar 

  29. Perreault, C., D.C. Roy, and C. Fortin (1998). Immunodominant minor histocompatibility antigens: The major ones.Immunol. Today 1969–74.

    Article  PubMed  CAS  Google Scholar 

  30. Loveland, B., C.R. Wang, H. Yonekawa, E. Hermel, and K.F. Lindahl (1990). Maternally transmitted histocompatibility antigen of mice: A hydrophobic peptide of a mitochondrially encoded protein.Cell 60971–980.

    Article  PubMed  CAS  Google Scholar 

  31. Eichwald, E.J and C.R. Silmser (1955). Skin. Transplant. Bull. 2148–149.

    PubMed  CAS  Google Scholar 

  32. van der Bruggen, P.C. Traversari, P. Chomez, C. Lurquin, E. De Plaen, Van den Eyndeet al.(1991). A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma.Science 2541643–1647.

    Article  PubMed  Google Scholar 

  33. Zuberi, A.R., G.J. Christianson, L.M. Mendoza, N. Shastri, and D.C. Roopenian (1998). Positional cloning and molecular characterization of an immunodominant cytotoxic determinant of the mouse H3 minor histocompatibility complex.Immunity 9687–698.

    Article  PubMed  CAS  Google Scholar 

  34. Venter, J.C., M.D. Adams, E.W. Myers, P.W. Li, R.J. Mural, G.G. Suttonet al.(2001). The sequence of the human genome.Science 2911304–1351.

    Article  PubMed  CAS  Google Scholar 

  35. Schubert, U., L.C. Anton, J. Gibbs, C.C. Norbury, J.W. Yewdell, and J.R. Bennink (2000). Rapid degradation of a large fraction of newly synthesized proteins by proteasomes.Nature404(6779), 770–774.

    Article  PubMed  CAS  Google Scholar 

  36. Reits, E.A., J.C. Vos, M. Gromme, and J. Neefjes (2000) The major substrates for TAP in vivo are derived from newly synthesized proteins.Nature404(6779), 774–778.

    Article  PubMed  CAS  Google Scholar 

  37. Malarkannan, S., M. Afkarian, and N. Shastri (1995). A rare cryptic translation product is presented by Kb major histocompatibility complex class I molecule to alloreactive T-cells.J. Exp. Med. 1821739–1750.

    Article  PubMed  CAS  Google Scholar 

  38. Malarkannan, S., T. Horng, P.P. Shih, S. Schwab, and N. Shastri (1999). Presentation of out-of-frame peptide/MHC class I complexes by a novel translation initiation mechanism.Immunity 10681–690.

    Article  PubMed  CAS  Google Scholar 

  39. Rotzschke, O., K. Falk, S. Stevanovic, G. Jung, P. Walden, and H.G. Rammensee (1991). Exact prediction of a natural T-cell epitope.Eur. J. Immunol. 212891–2894.

    Article  PubMed  CAS  Google Scholar 

  40. Falk, K., O. Rotzschke, and H.G. Rammensee (1990). Cellular peptide composition governed by major histocompatibility complex class I molecules.Nature 348248–251.

    Article  PubMed  CAS  Google Scholar 

  41. Brickner, A.G., E.H. Warren, J.A. Caldwell, Y. Akatsuka, T.N. Golovina, A., L. Zarlinget al.(2001). The immunogenicity of a new human minor histocompatibility antigen results from differential antigen processing.J. Exp. Med. 193195–206.

    Article  PubMed  CAS  Google Scholar 

  42. Engelhard, V.H., E. Lacy, and J.P. Ridge (1991). Influenza A-specific, HLA-A2.1-restricted cytotoxic T lymphocytes from HLA-A2.1 transgenic mice recognize fragments of the M1 protein.J. Immunol. 1461226–1232.

    PubMed  CAS  Google Scholar 

  43. Karttunen, J., S. Sanderson, and N. Shastri (1992). Detection of rare antigen-presenting cells by the lacZ T-cell activation assay suggests an expression cloning strategy for T-cell antigens.Proc. Natl. Acad. Sci. USA 896020–6024.

    Article  PubMed  CAS  Google Scholar 

  44. Shastri, N. (1996). Needles in haystacks: Identifying specific peptide antigens for T-cells.Curr. Opin. Immunol. 8271–277.

    Article  PubMed  CAS  Google Scholar 

  45. Karttunen, J. and N. Shastri (1991). Measurement of ligand-induced activation in single viable T-cells using the lacZ reporter gene.Proc. Natl. Acad. Sci. USA 883972–3976.

    Article  PubMed  CAS  Google Scholar 

  46. Sanderson, S. and N. Shastri (1994). LacZ inducible, antigen/MHC-specific T-cell hybrids.Int Immunol. 6369–376.

    Article  PubMed  CAS  Google Scholar 

  47. Malarkannan, S., L.M. Mendoza, and N. Shastri (2001). Generation of antigen-specific, lacZ-inducible T-cell hybrids.Meth. Mol. Biol. 156265–272.

    CAS  Google Scholar 

  48. Roopenian, D.C., A.P. Davis, G.J. Christianson, and L.E. Mobraaten (1993). The functional basis of minor histocompatibility loci.J. Immunol. 1514595–4605.

    PubMed  CAS  Google Scholar 

  49. Friedman, T.M., D. Statton, S.C. Jones, M.A. Berger, G.F. Murphy, and R. Korngold (2001). Vbeta spectratype analysis reveals heterogeneity of CD4+ T-cell responses to minor histocompatibility antigens involved in graftversus-host disease: correlations with epithelial tissue infiltrate.Biol. Blood Marrow Transplant.7, 2–13.

    Article  Google Scholar 

  50. Wettstein, P.J. and R. Korngold (1992). T-cell subsets required for in vivo and in vitro responses to single and multiple minor histocompatibility antigens.Transplantation 54296–307.

    Article  PubMed  CAS  Google Scholar 

  51. Snell, G.D. (1958). Histocompatibility genes of the mouse. II. Production and analysis of isogenic resistant lines.J. Natl. Cancer Inst. 21843–877.

    PubMed  CAS  Google Scholar 

  52. Michaelson, J. (1981). Genetic polymorphism of beta 2-microglobulin (32m) maps to the H-3 region of chromosome 2.Immunogenetics 13167–171.

    Article  PubMed  CAS  Google Scholar 

  53. Roopenian, D.C. and A.P. Davis (1989). Responses against antigens encoded by the H-3 histocompatibility locus: Antigens stimulating class I MHC- and class II MHC-restricted T-cells are encoded by separate genes.Immunogenetics 30335–343.

    Article  PubMed  CAS  Google Scholar 

  54. Click, R.E., D. Schneider, and D.C. Roopenian (1981). A new minor histocompatibility locus linked to H-3.J. Immunol. 1262378–2381.

    PubMed  CAS  Google Scholar 

  55. Zuberi, A.R., H.Q. Nguyen, H.J. Auman, B.A. Taylor, and D.C. Roopenian (1996). A genetic linkage map of mouse chromosome 2 extending from thrombospondin to paired box gene 1, including the H3 minor histocompatibility complex.Genomics 3375–84.

    Article  PubMed  CAS  Google Scholar 

  56. Snell, G.D. and L.C. Stevens (1961). Histocompatibility genes of mice. III. H-1 and H-4, two histocompatibility loci in the first linkage group.Immunology 4366–371.

    PubMed  CAS  Google Scholar 

  57. Davis, A.P. and D.C. Roopenian (1990). Complexity at the mouse minor histocompatibility locus H-4.Immunogenetics 317–12.

    Article  PubMed  CAS  Google Scholar 

  58. Brilliant, M.H., A. Ching, Y. Nakatsu, and E.M. Eicher (1994). The original pink-eyed dilution mutation (p) arose in Asiatic mice: Implications for the H4 minor histocompatibility antigen, Myodl regulation and the origin of inbred strains.Genetics 138203–211.

    PubMed  CAS  Google Scholar 

  59. Ben Porath, I. and N. Benvenisty (1996). Characterization of a tumor-associated gene, a member of a novel family of genes encoding membrane glycoproteins.Gene 18369–75.

    Article  PubMed  CAS  Google Scholar 

  60. Luedtke, B., A. Tranchita, R. Corbett, E.Y. Choi, D. Roopenian, and S. Malarkannan (2003). A single amino acid polymorphism is the Emp-3 gene defines immunodominant CTL responses directed to the minor histocompatibility antigen, H4.Immunogenetics55, 284–295.

    Article  PubMed  CAS  Google Scholar 

  61. Bolin, L.M., T. McNeil, L.A. Lucian, B. DeVaux, K. Franz-Bacon, D.M. Gormanet al.(1997). HNMP-1: A novel hematopoietic and neural membrane protein differentially regulated in neural development and injury.J. Neurosci. 175493–5502.

    PubMed  CAS  Google Scholar 

  62. Bevan, M.J. (1976). Minor H antigens introduced on H-2 different stimulating cells cross-react at the cytotoxic T-cell level during in vivo priming.J. Immunol. 1172233–2238.

    PubMed  CAS  Google Scholar 

  63. Perreault, C., J. Jutras, D.C. Roy, J.G. Filep, and S. Brochu (1996). Identification of an immunodominant mouse minor histocompatibility antigen (MiHA). T-cell response to a single dominant MiHA causes graft-versus-host disease.J. Clin. Invest. 98622–628.

    Article  PubMed  CAS  Google Scholar 

  64. Fontaine, P., G. Roy-Proulx, L. Knafo, C. Baron, D.C. Roy, and C. Perreault (2001). Adoptive transfer of minor histocompatibility antigen-specific T lymphocytes eradicates leukemia cells without causing graft-versus-host disease.Nat. Med. 7789–794.

    Article  PubMed  CAS  Google Scholar 

  65. Nevala, W.K. and P.J. Wettstein (1997). Immunodominant minor histocompatibility antigen peptides presented by H2Db molecules.Transplantation 641323–1330.

    Article  PubMed  CAS  Google Scholar 

  66. McBride, K., C. Baron, S. Picard, S. Martin, D. Boismenu, A. Bellet al.(2002). The model B6(doml) minor histocompatibility antigen is encoded by a mouse homolog of the yeast STT3 gene.Immunogenetics 54562–569.

    Article  PubMed  CAS  Google Scholar 

  67. Imperiali, B. and T.L. Hendrickson. (1995). Asparagine-linked glycosylation: Specificity and function of oligosaccharyl transferase.Bioorg. Med. Chem. 31565–1578.

    Article  PubMed  CAS  Google Scholar 

  68. Imperiali, B. and S.E. O’Connor (1999). Effect of N-linked glycosylation on glycopeptide and glycoprotein structure.Curr. Opin. Chem. Biol. 3643–649.

    Article  PubMed  CAS  Google Scholar 

  69. Eason, P.D. and B. Imperiali (1999). A potent oligosaccharyl transferase inhibitor that crosses the intracellular endoplasmic reticulum membrane.Biochemistry 385430–5437.

    Article  PubMed  CAS  Google Scholar 

  70. Snell, G.D., G. Cudkowicz, and H.P. Bunker (1967). Histocompatibility genes of mice. VII. H-13, a new histocompatibility locus in the fifth linkage group.Transplantation5, 492–499.

    Article  PubMed  CAS  Google Scholar 

  71. Mendoza, L.M., P. Paz, A. Zuberi, G. Christianson, D. Roopenian, and N. Shastri (1997). Minors held by majors: The H13 minor histocompatibility locus defined as a peptide/MHC class I complex.Immunity 7461–472.

    Article  PubMed  CAS  Google Scholar 

  72. Ostrov, D.A., M.M. Roden, W. Shi, E. Palmieri, G.J. Christianson, L. Mendozaet al.(2002). How H13 histocompatibility peptides differing by a single methyl group and lacking conventional MHC binding anchor motifs determine self-nonself discrimination.J. Immunol. 168283–289.

    PubMed  CAS  Google Scholar 

  73. Bailey, D.W. (1975) Genetics of histocompatibility in mice. I. New loci and congenic lines.Immunogenetics 2249–256.

    Article  Google Scholar 

  74. Mobraaten, L.E., H.P. Bunker, J. DeMaeyer-Guignard, E. DeMaeyer, and D.W. Bailey (1984). Location of histocompatibility and interferon loci on chromosome 3 of the mouse.J. Hered.75, 233–234.

    PubMed  CAS  Google Scholar 

  75. Malarkannan, S., T. Horng, P. Eden, F. Gonzalez, P. Shih, N. Brouwenstijnet al.(2000). Differences that matter: Major cytotoxic T-cell-stimulating minor histocompatibility antigens.Immunity 13333–344.

    Article  PubMed  CAS  Google Scholar 

  76. Wolpert, E., L. Franksson, and K. Karre (1995). Dominant and cryptic antigens in the MHC class I restricted T-cell response across a complex minor histocompatibility barrier: Analysis and mapping by elution of cellular peptides.Int. Immunol. 7919–928.

    Article  PubMed  CAS  Google Scholar 

  77. Nevala, W.K. and P.J. Wettstein (1996). The preferential cytolytic T lymphocyte response to immunodominant minor histocompatibility antigen peptides.Transplantation 62283–291.

    Article  PubMed  CAS  Google Scholar 

  78. Sahara, H. and N. Shastri (2003). Second class minors: Molecular identification of the autosomal H46 histocompatibility locus as a peptide presented by major histocompatibility complex class II molecules.J. Exp. Med. 197375–385.

    Article  PubMed  CAS  Google Scholar 

  79. Mendoza, L.M., G. Villaflor, P. Eden, D. Roopenian, and N. Shastri (2001). Distinguishing self from nonself: Immunogenicity of the murine H47 locus is determined by a single amino acid substitution in an unusual peptide.J. Immunol. 1664438–4445.

    PubMed  CAS  Google Scholar 

  80. Malarkannan, S., P.P. Shih, P.A. Eden, T. Horng, A.R. Zuberi, G. Christiansonet al.(1998). The molecular and functional characterization of a dominant minor H antigen, H60.J. Immunol. 1613501–3509.

    PubMed  CAS  Google Scholar 

  81. Cerwenka, A., A.B. Bakker, T. McClanahan, J. Wagner, J. Wu, J.H. Phillipset al.(2000). Retinoic acid early inducible genes define a ligand family for the activating NKG2D receptor in mice.Immunity 12721–727.

    Article  PubMed  CAS  Google Scholar 

  82. Diefenbach, A., A.M. Jamieson, S.D. Liu, N. Shastri, and D.H. Raulet (2000). Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages.Nat. Immunol. 1119–126.

    Article  PubMed  CAS  Google Scholar 

  83. Jamieson, A.M., A. Diefenbach, C.W. McMahon, N. Xiong, J.R. Carlyle, and D.H. Raulet (2002). The role of the NKG2D immunoreceptor in immune cell activation and natural killing.Immunity 1719–29.

    Article  PubMed  CAS  Google Scholar 

  84. Girardi, M., D.E. Oppenheim, C.R. Steele, J.M. Lewis, E. Glusac, R. Filleret al.(2001). Regulation of cutaneous malignancy by gammadelta T-cells.Science 294605–609.

    Article  PubMed  CAS  Google Scholar 

  85. Diefenbach, A., E.R. Jensen, A.M. Jamieson, and D.H. Raulet (2001). Rael and H60 ligands of the NKG2D receptor stimulate tumour immunity.Nature 413165–171.

    Article  PubMed  CAS  Google Scholar 

  86. Carayannopoulos, L.N., O.V. Naidenko, J. Kinder, E.L. Ho, D.H. Fremont, and W.M. Yokoyama (2002). Ligands for murine NKG2D display heterogeneous binding behavior.Eur. J. Immunol. 32597–605.

    Article  PubMed  CAS  Google Scholar 

  87. Cosman, D., J. Mullberg, C.L. Sutherland, W. Chin, R. Armitage, W. Fanslowet al.(2001). ULBPs, novel MHC class I-related molecules, bind to CMV glycoprotein ÚL16 and stimulate NK cytotoxicity through the NKG2D receptor.Immunity 14123–133.

    Article  PubMed  CAS  Google Scholar 

  88. Groh, V., R. Rhinehart, H. Secrist, S. Bauer, K.H. Grabstein, and T. Spies (1999). Broad tumor-associated expression and recognition by tumor-derived gamma delta T-cells of MICA and MICB.Proc. Natl. Acad. Sci. USA 966879–6884.

    Article  PubMed  CAS  Google Scholar 

  89. Bailey, D.W. (1971). Allelic forms of a gene controlling the female immune response to the male antigen in mice.Transplantation 11426–428.

    Article  PubMed  CAS  Google Scholar 

  90. Bailey, D.W. and J. Hoste (1971). A gene governing the female immune response to the male antigen in mice.Transplantation 11404–407.

    Article  PubMed  CAS  Google Scholar 

  91. Eleftheriou, B.E., D.W. Bailey, and M.X. Zarrow (1972). A gene controlling male pheromonal facilitation of PMSG-induced ovulation in mice.J. Reprod. Fenil. 31155–158.

    Article  CAS  Google Scholar 

  92. Wikstrand, C.J., G. Haughton, and D.W. Bailey (1974). The male antigen. II. Regulation of the primary and secondary responses to H-Y by H-2 associated genes.Cell Immunol 10238–247.

    Article  PubMed  CAS  Google Scholar 

  93. Scott, D.M., I.E. Ehrmann, P.S. Ellis, C.E. Bishop, A.I. Agulnik, E. Simpsonet al.(1995). Identification of a mouse male-specific transplantation antigen, H-Y.Nature 376695–698.

    Article  PubMed  CAS  Google Scholar 

  94. Scott, D.M., I.E. Ehrmann, PS Ellis, P.R. Chandler, and E. Simpson (1997). Why do some females reject males? The molecular basis for male-specific graft rejection.J. Mol. Med.75, 103–114.

    Article  PubMed  CAS  Google Scholar 

  95. Simpson, E., D. Scott, and P. Chandler (1997). The male-specific histocompatibility antigen, H-Y: A history of transplantation, immune response genes, sex determination and expression cloning.Annu. Rev. Immunol. 1539–61.

    Article  PubMed  CAS  Google Scholar 

  96. Greenfield, A., D. Scott, D. Pennisi, I. Ehrmann, P. Ellis, L. Cooperet al.(1996). An H-YDb epitope is encoded by a novel mouse Y chromosome gene.Nat. Genet. 14474–478.

    Article  PubMed  CAS  Google Scholar 

  97. Scott, D., C. Addey, P. Ellis, E. James, M.J. Mitchell, N. Sautet al.(2000). Dendritic cells permit identification of genes encoding MHC class II-restricted epitopes of transplantation antigens.Immunity 12711–720.

    Article  PubMed  CAS  Google Scholar 

  98. Fuller-Pace, F.V., S.M. Nicol, A.D. Reid, and D.P. Lane (1993). DbpA: A DEAD box protein specifically activated by 23s rRNA.EMBO J. 123619–3626.

    PubMed  CAS  Google Scholar 

  99. Nicol, S.M., M. Causevic, A.R. Prescott, and F.V. Fuller-Pace (2000). The nuclear DEAD box RNA helicase p68 interacts with the nucleolar protein fibrillarin and colocalizes specifically in nascent nucleoli during telophase.Exp. Cell Res. 257272–280.

    Article  PubMed  CAS  Google Scholar 

  100. Voogt, P.J., W.E. Fibbe, W.A. Marijt, E. Goulmy, W.F. Veenhof, M. Hamiltonet al.(1990). Rejection of bone-marrow graft by recipient-derived cytotoxic T lymphocytes against minor histocompatibility antigens.Lancet 335131–134.

    Article  PubMed  CAS  Google Scholar 

  101. den Haan, J.M., L.M. Meadows, W. Wang, J. Pool, E. Blokland, T.L. Bishopet al.(1998). The minor histocompatibility antigen HA-1: A diallelic gene with a single amino acid polymorphism.Science 2791054–1057.

    Article  Google Scholar 

  102. Tseng, L.H., M.T. Lin, J.A. Hansen, T. Gooley, J. Pei, A.G. Smithet al.(1999). Correlation between disparity for the minor histocompatibility antigen HA-1 and the development of acute graft-versus-host disease after allogeneic marrow transplantation.Blood 942911–2914.

    PubMed  CAS  Google Scholar 

  103. Tseng, L.H., M.T. Lin, P.J. Martin, J. Pei, A.G. Smith, and J.A. Hansen (1998). Definition of the gene encoding the minor histocompatibility antigen HA-1 and typing for HA-1 from genomic DNA.Tissue Antigens 52305–311.

    Article  PubMed  CAS  Google Scholar 

  104. Ren, E.C., P. Kangueane, P. Kolatkar, M.T. Lin, L.H. Tseng, and J.A. Hansen (2000). Molecular modeling of the minor histocompatibility antigen HA-1 peptides binding to HLA-A alleles.Tissue Antigens 5524–30.

    Article  PubMed  CAS  Google Scholar 

  105. Tseng, L.H., M.T. Lin, J.A. Hansen, T. Gooley, J. Pei, A.G. Smithet al.(1999). Correlation between disparity for the minor histocompatibility antigen HA-1 and the development of acute graft-versus-host disease after allogeneic marrow transplantation.Blood 942911–2914.

    PubMed  CAS  Google Scholar 

  106. Lin, M.T., T. Gooley, J.A. Hansen, L.H. Tseng, E.G. Martin, K. Singletonet al.(2001). Absence of statistically significant correlation between disparity for the minor histocompatibility antigen-HA-1 and outcome after allogeneic hematopoietic cell transplantation.Blood 983172–3173.

    Article  PubMed  CAS  Google Scholar 

  107. de Bueger, M., A. Bakker, J.J. Van Rood, and E. Goulmy (1991). Minor histocompatibility antigens, defined by graft-vs-host disease-derived cytotoxic T lymphocytes, show variable expression on human skin cells.Eue. J. Immunol. 212839–2844.

    Article  Google Scholar 

  108. den Haan, J.M., N.E. Sherman, E. Blokland, E. Huczko, E Koning, J.W. Drijfhoutet al.(1995). Identification of a graft versus host disease-associated human minor histocompatibility antigen.Science 2681476–1480.

    Article  Google Scholar 

  109. Pierce, R.A., E.D. Field, T. Mutis, T.N. Golovina, C. Kap-Herr, M. Wilkeet al.(2001). The HA-2 minor histocompatibility antigen is derived from a diallelic gene encoding a novel human class I myosin protein.J. Immunol. 1673223–3230.

    PubMed  CAS  Google Scholar 

  110. Warren, E.H., B.E. Otterud, R.W. Linterman, A.G. Brickner, V.H. Engelhard, M.F. Leppertet al.(2002). Feasibility of using genetic linkage analysis to identify the genes encoding T-cell-defined minor histocompatibility antigens.Tissue Antigens 59293–303.

    Article  PubMed  CAS  Google Scholar 

  111. Voogt, P.J., E. Goulmy, W.F. Veenhof, M. Hamilton, W.E. Fibbe, J.J. Van Roodet al.(1988). Cellularly defined minor histocompatibility antigens are differentially expressed on human hematopoietic progenitor cells.J. Exp. Med. 1682337–2347.

    Article  PubMed  CAS  Google Scholar 

  112. de Bueger, M., A. Bakker, J.J. Van Rood, W.F. van der, and E. Goulmy (1992). Tissue distribution of human minor histocompatibility antigens. Ubiquitous versus restricted tissue distribution indicates heterogeneity among human cytotoxic T lymphocyte-defined non-MHC antigens.J. Immunol. 1491788–1794.

    PubMed  Google Scholar 

  113. van der, H.D., E. Goulmy, J.H. Falkenburg, Y.M. Kooij-Winkelaar, S.A. Luxemburg-Heijs, H.M. Goselinket al.(1994). Recognition of minor histocompatibility antigens on lymphocytic and myeloid leukemic cells by cytotoxic T-cell clones.Blood 831060–1066.

    PubMed  Google Scholar 

  114. Engelhard, V.H., A.G. Brickner, and A.L. Zarling (2002). Insights into antigen processing gained by direct analysis of the naturally processed class I MHC associated peptide repertoire.Mol. Immunol. 39127–137.

    Article  PubMed  CAS  Google Scholar 

  115. Dolstra, H., H. Fredrix, F. Preijers, E. Goulmy, C.G. Figdor, T.M. de Witteet al.(1997). Recognition of a B cell leukemia-associated minor histocompatibility antigen by CTL.J. Immunol. 158560–565.

    PubMed  CAS  Google Scholar 

  116. Dolstra, H., H. Fredrix, F. Maas, P.G. Coulie, F. Brasseur, E. Mensinket al.(1999). A human minor histocompatibility antigen specific for B cell acute lymphoblastic leukemia.J. Exp. Med. 189301–308.

    Article  PubMed  CAS  Google Scholar 

  117. Goulmy, E., A. Termijtelen, B.A. Bradley, and J.J. Van Rood (1977). Y-antigen killing by T-cells of women is restricted by HLA.Nature 266544–545.

    Article  PubMed  CAS  Google Scholar 

  118. Goulmy, E., B.A. Bradley, Q. Lansbergen, and J.J. Van Rood (1978). The importance of H-Y incompatibility in human organ transplantation.Transplantation 25315–319.

    Article  PubMed  CAS  Google Scholar 

  119. Vogt, M.H., R.A. de Paus, P.J. Voogt, R. Willemze, and J.H. Falkenburg (2000). DFFRY codes for a new human male-specific minor transplantation antigen involved in bone marrow graft rejection.Blood 951100–1105.

    PubMed  CAS  Google Scholar 

  120. Goulmy, E., E. Blokland, J. van Rood, D. Charmot, B. Malissen, and C. Mawas (1980). Production, expansion, and clonal analysis of T-cells with specific HLA-restricted male lysis.J. Exp. Med. 152182s-190s.

    PubMed  CAS  Google Scholar 

  121. Wang, W., L. Meadows, J. Den Haan, N.E. Sherman, Y. Chen, E. Bloklandet al.(1995) Human H-Y: A male-specific histocompatibility antigen derived from the SMCY protein.Science 2691588–1590.

    Article  PubMed  CAS  Google Scholar 

  122. Wu, J., E.C. Salido, P.H. Yen, T.K. Mohandas, H.H. Heng, L.C. Tsuiet al.(1994). The murine Xe169 gene escapes X-inactivation like its human homologue.Nat. Genet. 7491–496.

    Article  PubMed  CAS  Google Scholar 

  123. Wu, J., J. Ellison, E. Salido, P. Yen, T. Mohandas, and L.J. Shapiro (1994). Isolation and characterization of XE169, a novel human gene that escapes X-inactivation.Hum. Mol. Genet. 3153–160.

    Article  PubMed  CAS  Google Scholar 

  124. Meadows, L., W. Wang, J.M. den Haan, E. Blokland, C. Reinhardus, J.W. Drijfhoutet al.(1997). The HLAA*0201-restricted H-Y antigen contains a posttranslationally modified cysteine that significantly affects T-cell recognition.Immunity 6273–281.

    Article  PubMed  CAS  Google Scholar 

  125. Pierce, R.A., E.D. Field, J.M. den Haan, J.A. Caldwell, F.M. White, J.A. Martoet al.(1999). Cutting edge: The HLA-A*0101-restricted HY minor histocompatibility antigen originates from DFFRY and contains a cysteinylated cysteine residue as identified by a novel mass spectrometric technique.J. Immunol. 1636360–6364.

    PubMed  CAS  Google Scholar 

  126. Warren, E.H., M.A. Gavin, E. Simpson, P. Chandler, D.C. Page, C. Distecheet al.(2000). The human UTY gene encodes a novel HLA-B8-restricted H-Y antigen.J. Immunol. 1642807–2814.

    PubMed  CAS  Google Scholar 

  127. Vogt, M.H., E. Goulmy, F.M. Kloosterboer, E. Blokland, R.A. de Paus, R. Willemzeet al.(2000). UTY gene codes for an HLA-B60-restricted human male-specific minor histocompatibility antigen involved in stem cell graft rejection: Characterization of the critical polymorphic amino acid residues for T-cell recognition.Blood 963126–3132.

    PubMed  CAS  Google Scholar 

  128. Vogt, M.H., J.W. van den Muijsenberg, E. Goulmy, E. Spierings, P. Kluck, M.G. Kesteret al.(2002). The DBY gene codes for an HLA-DQ5-restricted human male-specific minor histocompatibility antigen involved in graft-versus-host disease.Blood 993027–3032.

    Article  PubMed  CAS  Google Scholar 

  129. Lindahl, K.F. and K. Burki (1982). Mta, a maternally inherited cell surface antigen of the mouse, is transmitted in the egg.Proc. Natl. Acad. Sci. USA 795362–5366.

    Article  PubMed  CAS  Google Scholar 

  130. Lindahl, K.F., B. Hausmann, and V.M. Chapman (1983). A new H-2-linked class I gene whose expression depends on a maternally inherited factor.Nature 306383–385.

    Article  PubMed  CAS  Google Scholar 

  131. Lindahl, K.F., B. Hausmann, P.J. Robinson, J.L. Guenet, D.C. Wharton, and H. Winking (1986). Mta, the maternally transmitted antigen, is determined jointly by the chromosomal Hmt and the extrachromosomal Mtf genes.J. Exp. Med. 163334–346.

    Article  PubMed  CAS  Google Scholar 

  132. Wang, C.R., B.E. Loveland, and K.F. Lindahl (1991). H-2M3 encodes the MHC class I molecule presenting the maternally transmitted antigen of the mouse.Cell 66335–345.

    Article  PubMed  CAS  Google Scholar 

  133. Morse, M.C., G. Bleau, V.M. Dabhi, F. Hetu, E.A. Drobetsky, K.F. Lindahlet al.(1996). The COI mitochondrial gene encodes a minor histocompatibility antigen presented by H2–M3.J. Immunol. 1563301–3307.

    PubMed  CAS  Google Scholar 

  134. Bhuyan, P.K., L.L. Young, K.F. Lindahl, and G.W. Butcher (1997). Identification of the rat maternally transmitted minor histocompatibility antigen.J. Immunol. 1583753–3760.

    PubMed  CAS  Google Scholar 

  135. Hann, S.R., M.W. King, D.L. Bentley, C.W. Anderson, and R.N. Eisenman (1988). A non-AUG translational initiation in c-myc exon 1 generates an N-terminally distinct protein whose synthesis is disrupted in Burkitt’s lymphomas.Cell 52185–195.

    Article  PubMed  CAS  Google Scholar 

  136. Drabkin, H.J. and U.L. RajBhandary (1998). Initiation of protein synthesis in mammalian cells with codons other than AUG and amino acids other than methionine.Mol. Cell Biol. 185140–5147.

    PubMed  CAS  Google Scholar 

  137. Mayrand, S.M. and W.R. Green (1998). Non-traditionally derived CTL epitopes: Exceptions that prove the rules?Immunol. Today 19551–556.

    Article  PubMed  CAS  Google Scholar 

  138. Ishikawa, Y., K. Kashiwase, M. Okai, A. Ogawa, T. Akaza, Y. Morishimaet al.(2001). Polymorphisms in the coding region of mtDNA and effects on clinical outcome of unrelated bone marrow transplantation.Bone Marrow Transplant. 28603–607.

    Article  PubMed  CAS  Google Scholar 

  139. Wiltshire, T., M.T. Pletcher, S. Batalov, S.W. Barnes, L.M. Tarantino, M.P. Cookeet al.(2003). Genome-wide single-nucleotide polymorphism analysis defines haplotype patterns in mouse.Proc. Natl. Acad. Sci. USA. 1003380–3385.

    Article  PubMed  CAS  Google Scholar 

  140. Bevan, M.J. (1975). The major histocompatibility complex determines susceptibility to cytotoxic T-cells directed against minor histocompatibility antigens.J. Exp. Med. 1421349–1364.

    Article  PubMed  CAS  Google Scholar 

  141. Korngold, R. and P.J. Wettstein (1990). Immunodominance in the graft-vs-host disease T-cell response to minor histocompatibility antigens.J. Immunol. 1454079–4088.

    PubMed  CAS  Google Scholar 

  142. Wolpert, E.Z., P. Grufman, J.K. Sandberg, A. Tegnesjo, and K. Karre (1998). Immunodominance in the CTL response against minor histocompatibility antigens: Interference between responding T-cells, rather than with presentation of epitopes.J. Immunol. 1614499–4505.

    PubMed  CAS  Google Scholar 

  143. Nevala, W.K. and P.J. Wettstein (1996). The preferential cytolytic T lymphocyte response to immunodominant minor histocompatibility antigen peptides.Transplantation 62283–291.

    Article  PubMed  CAS  Google Scholar 

  144. Vijh, S. and E.G. Pamer (1997). Immunodominant and subdominant CTL responses to Listeria monocytogenes infection.J. Immunol. 1583366–3371.

    PubMed  CAS  Google Scholar 

  145. van der Most, R.G., K. Murali-Krishna, J.L. Whitton, C. Oseroff, J. Alexander, S. Southwoodet al.(1998). Identification of Db-and Kb-restricted subdominant cytotoxic T-cell responses in lymphocytic choriomeningitis virus-infected mice.Virology 240158–167.

    Article  PubMed  Google Scholar 

  146. Pamer, E.G., A.J. Sijts, M.S. Villanueva, D.H. Busch, and S. Vijh (1997). MHC class I antigen processing of Listeria monocytogenes proteins: Implications for dominant and subdominant CTL responses.Immunol. Rev. 158129–136.

    Article  PubMed  CAS  Google Scholar 

  147. Busch, D.H. and E.G. Pamer (1998). MHC class I/peptide stability: Implications for immunodominance, in vitro proliferation, and diversity of responding CTL.J. Immunol. 1604441–4448.

    PubMed  CAS  Google Scholar 

  148. Busch, D.H., I.M. Pilip, S. Vijh, and E.G. Pamer (1998). Coordinate regulation of complex T-cell populations responding to bacterial infection.Immunity 8353–362.

    Article  PubMed  CAS  Google Scholar 

  149. van der Most, R.G., K. Murali-Krishna, J.L. Whitton, C. Oseroff, J. Alexander, S. Southwoodet al.(1998). Identification of Db-and Kb-restricted subdominant cytotoxic T-cell responses in lymphocytic choriomeningitis virus-infected mice.Virology 240158–167.

    Article  PubMed  Google Scholar 

  150. Snell, G.D. (1981). Studies in histocompatibility.Science 213172–178.

    Article  PubMed  CAS  Google Scholar 

  151. Han, A.C., J.R. Rodgers, and R.R. Rich (1989). An unexpectedly labile mitochondrially encoded protein is required for Mta expression.Immunogenetics 29258–264.

    Article  PubMed  CAS  Google Scholar 

  152. Ben Porath, I., C.A. Kozak, and N. Benvenisty (1998). Chromosomal mapping of Tmp (Emp1), Xmp (Emp2), and Ymp (Emp3), genes encoding membrane proteins related to Pmp22.Genomics 49443–447

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this chapter

Cite this chapter

Malarkannan, S., Pooler, L. (2004). Minor Histocompatibility Antigens: Molecular Barriers for Successful Tissue Transplantation. In: Wilkes, D.S., Burlingham, W.J. (eds) Immunobiology of Organ Transplantation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8999-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8999-4_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4754-5

  • Online ISBN: 978-1-4419-8999-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics