Skip to main content

Ultrastructural Diagnosis of Neuropathic Detrusor Overactivity: Validation of a Common Myogenic Mechanism

  • Chapter
Bladder Disease, Part A

Abstract

Different types of cell junctions have been described in lower urinary tract musculature. Intermediate cell junctions (ICJ) predominate the normal mammalian detrusor(including that of the human), mediating coupling of smooth muscle cells (cell-to-cell transmittal of contraction) mechanically.7,8,14,15 ICJ consist of strictly parallel sarcolemmae of adjacent cells, with 25 to 60 nm separation gaps that contain central linear densities. They are bordered by paired symmetrical dense plaques in the subsarcolemmal sarcoplasm, and anchor obliquely slanted myofilaments to the cell membranes (Fig. 1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrams P, Blavais JG, Stanton S., Andersen JT: The standardization of terminology of the lower urinary tract function. The International Continence Society Committee on Standardization of Terminology. Neurourol Urodyn, 7:403, 1988.

    Article  Google Scholar 

  2. Brading AF: A myogenic basis for the overactive bladder. Urology, 50(Suppl 6A):57, 1997.

    Article  PubMed  CAS  Google Scholar 

  3. Burnstock G: Development of smooth muscle and its innervation. In: Bulbring E, Brading AF, Jones AW, Tomita T, editors. Smooth muscle: An assessment of current knowledge. Austin: University of Texas Press, p. 432–458; 1981.

    Google Scholar 

  4. Chandross KJ: Nerve injury and inflammatory cytokines modulate gap junctions in the peripheral nervous system. Glia, 24:21, 1998.

    Article  PubMed  CAS  Google Scholar 

  5. Daniel EE, Cowan W, Daniel VP: Structural bases for neural and myogenic control of human detrusor muscle. Can J Physiol Pharmacol, 61:1247, 1983.

    Article  PubMed  CAS  Google Scholar 

  6. Dixon JS, Gosling JA: Ultrastructure of smooth muscle cells in the urinary system. In: Motta PM, editors. Ultrastructure of smooth muscle. Boston: Kluwer Academic Publishers, p153–170; 1990.

    Chapter  Google Scholar 

  7. Elbadawi A: Functional anatomy of the organs of micturition. Urol Clin N Am, 23:177, 1996.

    Article  CAS  Google Scholar 

  8. Elbadawi A: Functional pathology of urinary bladder muscularis: the new frontier in diagnostic uropathology. Sem Diag Pathol, 10:314, 1993.

    CAS  Google Scholar 

  9. Elbadawi A: The neostructural myogenic mechanism of detrusor overactivity. Urology, 50(Suppl 6A):71, 1997.

    Article  Google Scholar 

  10. Elbadawi A: Microstructural basis of detrusor contractility: The MIN approach to its understanding and study. Neurourol Urodyn, 10:77, 1991.

    Article  Google Scholar 

  11. Elbadawi A, Hailemariam S, Yalla SV, Resnick NM: Structural basis of geriatric voiding dysfunction. VI. Validation and update of diagnostic criteria in 71 detrusor biopsies. J Urol, 157:1802, 1997.

    Article  PubMed  CAS  Google Scholar 

  12. Elbadawi A, Hailemariam S, Yalla SV, Resnick NM: Structural basis of geriatric voiding dysfunction. VII. Prospective ultrastructural/urodynamic evaluation of its natural evolution. J Urol, 157:1814, 1997.

    Article  PubMed  CAS  Google Scholar 

  13. Elbadawi A, Yalla SV, Resnick NM: Structural basis of geriatric voiding dysfunction. I. Methods of a prospective ultrastructural/urodynamic study and an overview of the findings. J Urol, 150:1650, 1993.

    PubMed  CAS  Google Scholar 

  14. Elbadawi A, Yalla SV, Resnick N.M: Structural basis of geriatric voiding dysfunction. II. Aging detrusor: Normal versus impaired contractility J Urol, 150:1657, 1993.

    PubMed  CAS  Google Scholar 

  15. Elbadawi A, Yalla SV, Resnick NM: Structural basis of geriatric voiding dysfunction. III. Detrusor overactivity. J Urol, 150:1668, 1993.

    PubMed  CAS  Google Scholar 

  16. Elbadawi A, Yalla SV, Resnick NM: Structural basis of geriatric voiding dysfunction. IV. Bladder outlet obstruction J Urol, 150:1681, 1993.

    PubMed  CAS  Google Scholar 

  17. Hailemariam S, Elbadawi A, Yalla SV, Resnick NM: Structural basis of geriatric voiding dysfunction. V. Standardized protocols for routine ultrastructural study and diagnosis of endoscopic detrusor biopsies. J Urol, 157:1783, 1997.

    Article  PubMed  CAS  Google Scholar 

  18. Mensink A, Brouwer A, Van den Burg E, Guerts S, Jongen WMF, Lakemond CMM, et al: Modulation of intercellular communication between smooth muscle cells by growth factors and cytokines. Eur J Pharmacol, 310:73, 1996.

    Article  PubMed  CAS  Google Scholar 

  19. Mills IW, Greenland JE, McMurray G, McCoy R, Ho KMT, Noble JG, et al: Studies of the pathophysiology of idiopathic detrusor instability: the physiological properties of the detrusor smooth muscle and its pattern of innervation. J Urol, 163:646, 2000.

    Article  PubMed  CAS  Google Scholar 

  20. Pasdar M, Li Z, Marreli M, Nguyen BT, Park M, Wong K: Inhibition of junction assembly in cultured epithelial cells by hepatocyte growth factor/scatter factor is concomitant with increased stability and altered phosphorylation of the soluble junctional molecules. Cell Growth & Differentiation, 8:451, 1997.

    CAS  Google Scholar 

  21. Savagner P, Yamada KM, Thiery JP: The Zinc-finger protein Slug causes desmosome dissociation, an initial and necessary step for growth factor-induced epithelial-mesenchymal transition. J Cell Biology, 137:1403, 1997.

    Article  CAS  Google Scholar 

  22. Tse V, Wills E, Szonyi G, Khadra MH: The application of ultrastructural studies in the diagnosis of bladder dysfunction in a clinical setting. J Urol, 163:535, 2000.

    Article  PubMed  CAS  Google Scholar 

  23. Valles AM, Boyer B, Badet J, Tucker GC, Barritault D, Thiery JP: Acidic fibroblast growth factor is a modulator of epithelial plasticity in a rat bladder carcinoma cell line. Proc Natl Acad Sci, 87:1124, 1990.

    Article  PubMed  CAS  Google Scholar 

  24. Warner A: Interactions between growth factors and gap junctional communication in developing systems. Novartis Foundation Symposium, 219:60, 1999.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Haferkamp, A., Dörsam, J., Elbadawi, A. (2003). Ultrastructural Diagnosis of Neuropathic Detrusor Overactivity: Validation of a Common Myogenic Mechanism. In: Atala, A., Slade, D. (eds) Bladder Disease, Part A. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8889-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8889-8_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4707-1

  • Online ISBN: 978-1-4419-8889-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics