Skip to main content

Yeast Signal Transduction: Regulation and Interface with Cell Biology

  • Conference paper
Advances in Systems Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 547))

Abstract

We examined the morphogenetic transitions that yeast cells undergo in response to extracellular cues, and determined that multiple mechanisms control specificity of signal transduction pathway signaling and the attendant physiological response that ensues. This article describes the approaches that we used to determine these mechanisms. Our findings indicate that scaffolding proteins, which organize signal transduction pathways, are an especially powerful means to achieve specificity. We do not yet know how general this mechanism is. Our studies have also started to reveal ways in which a protein, Ste20, first identified as a participant in signal transduction pathways, may also connect to the basic cell biology machinery. Synthetic lethal genetic analysis has suggested that the polarisome and a new ubiquitin-like system may be targets of Ste20.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Benton, B. K., Tinkelenberg, A., Gonzalez, I. and Cross, F. R., 1997, Cla4p, a Saccharomyces cerevisiae Cdc42p-activated kinase involved in cytokinesis, is activated at mitosis, Mol. Cell Biol. 17:5067–5076.

    PubMed  CAS  Google Scholar 

  • Carlson, M, 1999, Glucose repression in yeast, Curr. Opin. Microbiol. 2:202–207.

    Article  PubMed  CAS  Google Scholar 

  • Chant, J., Mischke, M., Mitchell, E., Herskowitz, I. and Pringle, J. R., 1995, Role of Bud3p in producing the axial budding pattern of yeast, J. Cell Biol. 129:767–778.

    Article  PubMed  CAS  Google Scholar 

  • Cullen, P. J. and Sprague, G. F., Jr., 2000, Glucose depletion causes haploid invasive growth in yeast, Proc. Natl. Acad. Sci. USA 97:13619–13624.

    Article  PubMed  CAS  Google Scholar 

  • Cullen, P. J. and Sprague, G. F., Jr., 2002, The roles of bud-site-selection proteins during haploid invasive growth in yeast, Mol. Biol. Cell 13:2990–3004.

    Article  PubMed  CAS  Google Scholar 

  • Cvrckova, R., De Virgilio, C., Manser, E., Pringle, J. R. and Nasmyth, K., 1995, Ste20-like protein kinases are required for normal localization of cell growth and for cytokinesis in budding yeast,Genes Dev. 9:1917–1830.

    Article  Google Scholar 

  • Evangelista, M, Blundell, K., Longtine, M. S., Chow, C. J., Adames, N., Pringle, J. R., Peter, M. and Boone, C, 1997, Bnilp, a yeast formin linking Cdc42p and the actin cytoskeleton during polarized morphogenesis, Science 276:118–122.

    Article  PubMed  CAS  Google Scholar 

  • Farkasovsky, M. and Kuntzel, H., 2001. Cortical Numlp interacts with the dynein intermediate chain Pacllp an cytoplasmic microtubules in budding yeast, J. Cell Biol. 152:251–262.

    Article  PubMed  CAS  Google Scholar 

  • Furukawa, K., Mizushina, N., Noda, T. and Ohsumi, Y., 2000, A protein conjugation system in yeast with homology to biosynthetic enzyme reaction of prokaryotes, J. Biol. Chem. 275:7462–7465.

    Article  PubMed  CAS  Google Scholar 

  • Gimeno, C. J., Ljungdahl, P. O., Styles, C. A. and Fink, G. R., 1992, Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth; regulation by starvation and RAS, Cell 68:1077–1090.

    Article  PubMed  CAS  Google Scholar 

  • Goehring, A. S., Mitchell, D. A., Tong, A.H.Y., Keniry, M., Boone, C. and Sprague, G. F., Jr., 2003, Synthetic lethal analysis implicates Ste20p, a p21-activated protein kinase, in polarisome activation, Mol. Biol. Cell, in press.

    Google Scholar 

  • Harkins, H. A., Page, N., Schenkman, L. R., De Virgilio, C, Shaw, S., Bussey, H. and Pringle, J. R., 2001, Bud8p and Bud9p, proteins that may mark the sites for bipolar budding in yeast, Mol. Biol. Cell 12:2497–2518.

    CAS  Google Scholar 

  • Herskowitz, I., 1997, Building organs and organisms: elements of morphogenesis exhibited by budding yeast, Cold Spring Harb. Symp. Quant. Biol. 62:57–63.

    Article  PubMed  CAS  Google Scholar 

  • Holly, S. P. and Blumer, K. J., 1999, PAK-family kinases regulate cell and actin polarization throughout the cell cycle of Saccharomyces cerevisiae, J. Cell Biol. 147:845–856.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, D. A. and Sprague, G. F., 2001, The phosphotyrosyl phosphatase activator, Ncslp (Rrdlp), functions with Cla4p to regulate the G(2)/M transition in Saccharomyces cerevisiae, Mol. Cell. Biol. 21:488–500.

    Article  PubMed  CAS  Google Scholar 

  • O’,Rourke, S. M. and Herskowitz, I., 1998, The Hoglp MAPK prevents cross talk between the HOG and pheromone response MAPK pathways in Saccharomyces cerevisiae, Genes Dev. 12:2874–2886.

    Article  PubMed  Google Scholar 

  • Posas, F. and Saito, H., 1997, Osmotic activation of the HOG MAPK pathway via Stellp MAPKKK: scaffold roles of Pbs2p MAPKK, Science 276:1702–1705.

    Article  PubMed  CAS  Google Scholar 

  • Pringle, J. R., Bi, E., Harkins, H. A., Zahner, J. E., De Virgilio, C, Chant, J., Corrado, K. and Fares, H., 1995, Establishment of cell polarity in yeast, Cold Spring Harb. Symp. Quant. Biol. 60:729–744.

    Article  PubMed  CAS  Google Scholar 

  • Sheu, Y. J., Santos, B., Fortin, N., Costigan, C. and Snyder, M., 1998, Spa2p interacts with cell polarity proteins and signaling components involved in yeast cell morphogenesis, Mol. Cell. Biol. 18:4053–4069.

    PubMed  CAS  Google Scholar 

  • Tong, A. H. Evangelista, M., Parsons, A. B., Xu, H., Bader, G. D., Page, N., Robinson, M., Raghibizadeh, S., Hogue, C. W., Bussey, H., et al., 2001, Systematic genetic analysis with ordered arrays of yeast deletion mutants, Science 294:2364–2368.

    Article  PubMed  CAS  Google Scholar 

  • Yashar, B., Irie, K., Printen, J. A., Stevenson, B. J., Sprague, G. F., Jr., Matsumoto, K. and Errede, B., 1995, Yeast MEK-dependent signal transduction: Response thresholds and parameters affecting fidelity, Mol. Cell. Biol. 15:6545–6553.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media New York

About this paper

Cite this paper

Sprague, G.F., Cullen, P.J., Goehring, A.S. (2004). Yeast Signal Transduction: Regulation and Interface with Cell Biology. In: Opresko, L.K., Gephart, J.M., Mann, M.B. (eds) Advances in Systems Biology. Advances in Experimental Medicine and Biology, vol 547. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8861-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8861-4_8

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4695-1

  • Online ISBN: 978-1-4419-8861-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics