Skip to main content

Structural Basis for Signal Processing

Challenge of the Synaptic Nests

  • Chapter
Acoustical Signal Processing in the Central Auditory System

Abstract

The synaptic nest represents a structural pattern and a concept whose time have come for serious consideration in the effort to understand the mechanisms responsible for signal coding in the auditory system. Synaptic nests have an organization which makes it difficult to explain mechanisms of signal processing based on current assumptions about the primacy of cell types and their discrete circuits. Synaptic nests occur in many other parts of the central nervous system, including other sensory nuclei and the cerebellum, although this is not very well appreciated at present. Thus their functional significance has general implications for understanding the function of the nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Altaian J, Bayer SA (1977) Time of origin and distribution of a new cell type in the rat cerebellar cortex. Exp Brain Res 29: 265–274.

    Google Scholar 

  • Bilak SR, Morest DK (1996) Differential expression of the metabotropic glutamate receptor mGluRl in the mouse cochlear nucleus: an in situ/immunohistochemistry study of specific neuron types. (Submitted)

    Google Scholar 

  • Bilak SR, Bilak MM, Morest DK (1996) Differential expression of N-methyl-D-aspartate receptor in the cochlear nucleus of the mouse. Neuroscience 75: 1075–1097.

    Article  PubMed  CAS  Google Scholar 

  • Brawer JR, Morest DK, and Kane EC (1974) The neuronal architecture of the cochlear nucleus of the cat. J Comp Neurol 155:251–299.

    Article  PubMed  CAS  Google Scholar 

  • Cant NB, Morest DK (1979) The bushy cells in the anteroventral cochlear nucleus of the cat: a study with the electron microscope. Neuroscience 4: 1925–1945.

    Article  PubMed  CAS  Google Scholar 

  • Danbolt NC, Storm-Mathisen J, Kanner BI (1992) A [Na+ + K+]coupled L-glutamate transporter purified from rat brain is located in glial cell processes. Neuroscience 51: 295–310.

    Article  PubMed  CAS  Google Scholar 

  • Dowling JE, Boycott BB (1966) Organization of the primate retina: electron microscopy. Proc roy Soc B 166: 80–111.

    Article  CAS  Google Scholar 

  • Gerren RA, Weinberger NM (1983) Long term potentiation in the magnocellular medial geniculate nucleus of anesthetized cat. Brain Res. 265: 138–142.

    Article  PubMed  CAS  Google Scholar 

  • Gobel S (1974) Synaptic organization of the substantia gelatinosa glomeruli in the spinal trigeminal nucleus of the adult cat. J Neurocytol 3: 219–243.

    Article  PubMed  CAS  Google Scholar 

  • Gundersen V, Shupliakov O, Brodin L, Ottersen OP, Storm-Mathisen J (1995) Quantification of excitatory amino acid uptake at intact glutamatergic synapses by immunocytochemistry of exogenous D-aspartate. J Neurosci. 15:4417–28.

    PubMed  CAS  Google Scholar 

  • Hamberger A, Nystrom B, Sellstrom A, Woiler CT (1976) Amino acid transport in isolated neurons and glia. Adv Exp Med Biol. 69:221–36.

    Article  PubMed  CAS  Google Scholar 

  • Hutson KA, Morest DK (1994) Ultrastructure of small cell regions in the cochlear nucleus (CN) of chinchilla. Assoc. Res. Otolaryngol. Abstr. 17: 27.

    Google Scholar 

  • Hutson KA, Morest DK (1996) Fine structure of the cell clusters in the cochlear nerve root: stellate, granule, and mitt cells offer insights into the synaptic organization of local circuit neurons. J Comp Neurol 371: 397–14.

    Article  PubMed  CAS  Google Scholar 

  • Jones EG, Powell TPS (1969) Electron microscopy of synaptic glomeruli in the thalamic relay nuclei of the cat. Proc roy Soc B 172: 153–171.

    Article  CAS  Google Scholar 

  • Kane ESC (1973) Octopus cells int he cochlear nucleus of the cat: heterotypic synapses upon homeotypic neurons. Int. J. Neurosci 5: 251–279.

    Article  PubMed  CAS  Google Scholar 

  • Kane ESC (1974) Synaptic organization in the dorsal cochlear nucleus of the cat: a light and electron microscopic study. J Comp Neurol 155: 301–330.

    Article  PubMed  CAS  Google Scholar 

  • Kidd M (1962) Electron microscopy of the inner plexiform layer of the retina in the cat and the pigeon. J Anat (Lond) 96: 179–187.

    CAS  Google Scholar 

  • Kolston J, Osen KK, Hackney CM, Ottersen CP, and Storm-Mathisen J (1992) An atlas of glycine-and GABA-like immunoreactivity and colocalization in the cochlear nuclear complex of the guinea pig. Anat Einbryol 186:443–65.

    CAS  Google Scholar 

  • LeDoux JE, Sakaguchi A, Reis DJ (1984) Subcortical efferent projections of the medial geniculate nucleus mediate emotional responses conditioned to acoustic stimuli. J Neuroscience 4: 683–698.

    CAS  Google Scholar 

  • LeDoux JE, Ruggiero DA, Reis DJ (1985) Projections to the subcortical forebrain from anatomically defined regions of the medial geniculate body in the rat. J Comp Neurol 242: 182–213.

    Article  PubMed  CAS  Google Scholar 

  • Morel A (1980) Codage des sons dans le corps genouillé médian du chat: évaluation de l’organisation tonotopique de ses différents noyaux. Doctoral dissertation. Université de Lausanne. Zurich: Juris Druck + Verlag.

    Google Scholar 

  • Morest DK (1970) Electron microscopic study of the synaptic organization in the medial geniculate body of the cat. Anat Rec 166: 351.

    Google Scholar 

  • Morest DK (1971) Dendrodendritic synapses of cells that have axons: the fine structure of the Golgi type II cell in the medial geniculate body of the cat. Z Anat Entwickl-Gesch 133: 216–246.

    Article  CAS  Google Scholar 

  • Morest DK (1975) Synaptic relationships of Golgi type II cells in the medial geniculate body of the cat. J Comp Neurol 162: 157–194.

    Article  PubMed  CAS  Google Scholar 

  • Morest DK (1993) the cellular basis for signal processing the mammalian cochlear nuclei. In MD Merchan, JM Juiz, DA Godfrey and E Mugnaini (eds). The Mammalian Cochlear Nuclei: Organization and Function. N.Y.: Plenum Press, pp 195–210.

    Google Scholar 

  • Morest DK. Hutson KA, and Kwok S (1990) Cytoarchitectonic atlas of the cochlear nucleus of the chinchilla. Chinchilla laniger. J Comp Neurol 300: 230–248.

    Article  PubMed  CAS  Google Scholar 

  • Morest DK, Winer JA (1986) The comparative anatomy of neurons: homologous neurons in the medial geniculate body of the opossum and the cat. Adv Anat Embryol Cell Biol 97: 1–96.

    Article  PubMed  CAS  Google Scholar 

  • Mugnaini E, Floris A (1994) the unipolar brush cell: a neglected neuron of the mammalian cerebellar cortex. J Comp Neurol 339: 174–180.

    Article  PubMed  CAS  Google Scholar 

  • Mugnaini E, Osen KK, Dahl A-L, Friedrich VL, Jr, Korte G (1980) Fine structure of granule cells and related interneurons (termed Golgi cells) in the cochlear nuclear complex of cat, rat, and mouse. J Neurocytol 9: 537–570.

    Article  PubMed  CAS  Google Scholar 

  • Oliver DL, Potashner SJ, Jones DR and Morest DK (1983) Selective labeling of spiral ganglion and granule cells with D-aspartate in the auditory system of cat and guinea pig. J Neuroscience 3: 455–472.

    CAS  Google Scholar 

  • Osen KK (1969) Cytoarchitecture of the cochlear nuclei in the cat. J Comp Neurol 135: 453–84.

    Article  Google Scholar 

  • Ostapoff EM, Feng J. Morest DK (1994) A physiological and structural study of neuron types in the cochlear nucleus. II. Neuron types and their structural correlation with response properties. J Comp Neurol 346: 19–42.

    Article  PubMed  CAS  Google Scholar 

  • Ostapoff EM, Morest DK (1991) Synaptic organization of globular bushy cells in the ventral cochlear nucleus of the cat: a quantitative study. J Comp Neurol 314: 598–613.

    Article  PubMed  CAS  Google Scholar 

  • Palay SL, Chan-Palay V (1974) Cerebellar Cortex, Cytology and Organization. Berlin: Springer-Verlag.

    Book  Google Scholar 

  • Peters A, Palay SL (1966) The morphology of laminae A and Al of the dorsal nucleus of the lateral geniculate body of the cat. J Anat (Lond) 100: 451–486.

    CAS  Google Scholar 

  • Raviola G, Raviola E (1967) Light and electron microscopic observations on the inner plexiform layer of the rabbit retina. Amer J Anat 120: 403–26.

    Article  PubMed  CAS  Google Scholar 

  • Tolbert LP, Morest DK (1982) The neuronal architecture of the anteroventral cochlear nucleus of the cat in the region of the cochlear nerve root: electron microscopy. Neuroscience 7: 3053–3067.

    Article  PubMed  CAS  Google Scholar 

  • Toros-Morel A, de Ribaupierre F, Rouiller E (1981) Coding properties of the different nuclei of the cat’s medial geniculate body. In: Neuronal Mechanisms of Hearing (eds. J. Syka & L. Aitkin). NY: Plenum, pp 239–243.

    Chapter  Google Scholar 

  • White EL (1972) Synaptic organization in the olfactory glomerulus of the mouse. Brain Res 37: 69–80.

    Article  PubMed  CAS  Google Scholar 

  • Wilkin GP, Garthwaite J, Balazs R (1982) Putative acidic amino acid transmitters in the cerebellum. II. Electron microscopic localization of transport sites. Brain Res. 244: 69–80.

    Article  PubMed  CAS  Google Scholar 

  • Winer JA, Morest DK (1983) The medial division of the medial geniculate body of the cat: implications for thalamic organization. J Neurosci 3: 2629–2651.

    PubMed  CAS  Google Scholar 

  • Winer JA, Morest DK (1984) Axons of the dorsal division of the medial geniculate body of the cat: a study with the rapid Golgi method. J Comp Neurol 224: 344–370.

    Article  PubMed  CAS  Google Scholar 

  • Wright DD, Ryugo DK (1996) Mossy fiber projections from the cunéate nucleus to the cochlear nucleus in the rat. J Comp Neurol 365: 159–172.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media New York

About this chapter

Cite this chapter

Morest, D.K. (1997). Structural Basis for Signal Processing. In: Syka, J. (eds) Acoustical Signal Processing in the Central Auditory System. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8712-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8712-9_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4673-9

  • Online ISBN: 978-1-4419-8712-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics