Skip to main content

Thomson Scattering in Inertial Confinement Fusion Research

  • Chapter
Advanced Diagnostics for Magnetic and Inertial Fusion
  • 525 Accesses

Abstract

Thomson scattering [1] using short-wavelength probe lasers [2] is the standard diagnostic to characterize high-density inertial confinement fusion (ICF) plasmas [3]. Its unique capability to measure plasma parameters such as temperatures, densities, plasma flow, and ionization stages with high accuracy together with possible measurements of plasma wave fluctuations is now widely recognized in the area of laser-produced plasma research. Initially, many basic Thomson scattering experiments with applications to ICF have been performed [4] on the Nova laser facility at the Lawrence Livermore National Laboratory that produced hot mm-scale plasmas with laser energies of up to 30 kJ. More recently, we have also begun to perform Thomson scattering experiments at a second large facility namely the Omega laser facility at the University of Rochester [5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.-J. Kunze, The laser as a tool for plasma diagnostics, in Plasma Diagnostics, edited by W. Lochte-Holtgreven (North-Holland, Amsterdam, 1968) pp. 550–616.

    Google Scholar 

  2. H. A. Baldis, D. M Villeneuve, and C. J. Walsh, Plasma Waves in Laser Fusion Plasmas, Can. J. Phys. 64, 961–968 (1986).

    Article  ADS  Google Scholar 

  3. J. D. Lindl, Inertial Confinement Fusion, (Springer, New York, 1998).

    Google Scholar 

  4. S. H. Glenzer, W. E. Alley, K. G. Estabrook, J. D. De Groot, M Haines, J. H. Hammer, J.-P. Jaddaud, B. J. MacGowan, J. D. Moody, W. Rozmus, L. J. Suter, T. L. Weiland, and E. A. Williams, Thomson scattering from laser plasmas, Phys. Plasmas 6, 2117–2128 (1999).

    Article  ADS  Google Scholar 

  5. O. L. Landen, S. H. Glenzer, M. J. Edwards, R. W. Lee, G. W. Collins, R. C. Cauble, W. W. Hsing and B. A. Hammel, Dense Matter Characterization by X-ray Thomson Scattering, J. Quant. Spectrosc. Rad. Transfer 71, 465–478 (2001).

    Article  ADS  Google Scholar 

  6. S. H. Glenzer, C. A. Back, L. J. Suter, M. A. Blain, O. L. Landen, B. J. MacGowan, G. F. Stone, R. E. Turner, and B. H. Wilde, Thomson Scattering from Inertial Confinement Fusion hohlraum plasmas, Phys. Rev. Lett. 79, 1277–1280 (1997).

    Article  ADS  Google Scholar 

  7. S. H. Glenzer, C. A. Back, K. G. Estabrook, R. Wallace, K. Baker, B. J. MacGowan, B. A. Hammel, R. E. Cid, and J. S. De Groot, Observation of Two Ion Acoustic Waves in a Two-Species Laser-Produced Plasma with Thomson Scattering, Phys. Rev. Lett. 77, 1496–1499 (1996).

    Article  ADS  Google Scholar 

  8. S. H. Glenzer, W. Rozmus, B. J. MacGowan, K. G. Estabrook, J. D. De Groot, G. B. Zimmerman, H. A. Baldis, J. A. Harte, R. W. Lee, E. A. Williams, and B. G. Wilson, Thomson scattering from high-Z laser-produced plasmas, Phys. Rev. Lett. 82, 97–100 (1999).

    Article  ADS  Google Scholar 

  9. S. H. Glenzer, T. L. Weiland, J. Bower, A. J. MacKinnon, and B. J. MacGowan, High-Energy 4ω Probe Laser for laser-plasma experiments at Nova, Rev. Sci. Instrum. 70, 1089–1092 (1999).

    Article  ADS  Google Scholar 

  10. G. B. Zimmerman and W. L. Kruer, Comments Plasma Phys. Controlled Fusion 2, 85 (1975).

    Google Scholar 

  11. S. H. Glenzer, F. B. Rosmej, R. W. Lee, C. A. Back, K. G. Estabrook, B. J. MacGowan, T. D. Shepard, and R. E. Turner, Measurements of suprathermal electrons in hohlraum plasmas with x-ray spectroscopy, Phys. Rev. Lett. 81, 365–368 (1998).

    Article  ADS  Google Scholar 

  12. S. H. Glenzer, K. B. Fournier, B. G. Wilson, R. W. Lee, and L. J. Suter, Ionization Balance in Inertial Confinement Fusion Hohlraums, Phys. Rev. Lett. 87, 5002–5004 (2001).

    Article  ADS  Google Scholar 

  13. S. H. Glenzer, R. L. Berger, L. M. Divol, R. K. Kirkwood, B. J. MacGowan, J. D. Moody, J. E. Rothenberg, L. J. Suter, and E. A. Williams, Reduction of stimulated scattering losses from Hohlraum Plasmas with Laser Beam Smoothing, Phys. Plasmas 8, 1692–1697 (2001).

    Article  ADS  Google Scholar 

  14. W. L. Kruer, The Physics of Laser Plasma Interactions (Addison-Wesley, New York, 1988).

    Google Scholar 

  15. B. J. MacGowan, B. B. Afeyan, C. A. Back, R. L. Berger, G. Bonnaud, M. Casanova, B. I. Cohen, D. E. Desenne, D. F. Dubois, A. G. Dulieu, K. G. Estabrook, J. C. Fernandez, S. H. Glenzer, D. E. Hinkel, D. H. Kalanter, R. L. Kauffman, R. K. Kirkwood, W. L. Kruer, A. B. Langdon, B. F. Lasinski, D. S. Montgomery, J. D. Moody, D. H. Munro, L. V. Powers, H. A. Rose, C. Rouseaux, R. E. Turner, B. H. Wilde, S. C. Wilks, and E. A. Williams, Laser Plasma Interactions in ignition-scale hohlraum plasmas, Phys. Plasmas3, 2029–2040 (1996).

    Article  ADS  Google Scholar 

  16. R. K. Kirkwood, D. S. Montgomery, B. B. Afeyan, J. D. Moody, B. J. MacGowan, S. H. Glenzer, W. L. Kruer, K. G. Estabrook, K. B. Wharton, E. A. Williams, and R. L. Berger, Observation of the nonlinear Saturation of Langmuir Waves Driven by Ponderomotive Force in a Large Scale Plasma, Phys. Rev. Lett. 83, 2965–2968 (1999).

    Article  ADS  Google Scholar 

  17. J. D. Moody, B. J. MacGowan, S. H. Glenzer, R. K. Kirkwood, W. L. Kruer, D. S. Montgomery, A. J. Schmitt, E. A. Williams, and G. F. Stone, First measurements of short scale-length density fluctuations in a large laser-plasma, Phys. Rev. Lett. 83, 1783–1786 (1999).

    Article  ADS  Google Scholar 

  18. S. H. Glenzer, L. M. Divol, R. L. Berger, C. Geddes, R. K. Kirkwood, J. D. Moody, E. A. Williams, and P. E. Young, Thomson scattering measurements of saturated ion waves in laser fusion plasmas, Phys. Rev. Lett. 86, 2565–2568(2001).

    Article  ADS  Google Scholar 

  19. E. M. Campbell, Recent results from the Nova Program at LLNL, Laser Part. Beams 9, 209–231 (1991).

    Article  ADS  Google Scholar 

  20. B. A. Hammel, C. J. Keane, M. D. Cable. D. R. Kania, J. D. Kilkenny, R. W. Lee, and R. Pasha, X-ray spectroscopic measurements of high-densities and temperatures from indirectly driven inertial confinement fusion capsules, Phys. Rev. Lett. 70, 1263–1266 (1993).

    Article  ADS  Google Scholar 

  21. W. Seka, R. E. Bahr, R. W. Short, A. Simon, R. S. Craxton, D. S. Montgomery, A. E. Rubenchik, Nonlinear laser-matter interaction processes in long-scale-length plasmas, Phys. Fluids 4, 2232–2240, (1992).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Glenzer, S.H. (2002). Thomson Scattering in Inertial Confinement Fusion Research. In: Stott, P.E., Wootton, A., Gorini, G., Sindoni, E., Batani, D. (eds) Advanced Diagnostics for Magnetic and Inertial Fusion. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8696-2_55

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8696-2_55

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4669-2

  • Online ISBN: 978-1-4419-8696-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics