Skip to main content

Abstract

The standard scenario of inertial fusion energy (IFE) is illustrated in Fig. 1. Laser beams symmetrically irradiate the surface of a fusion target that contains equimolar mixture of deuterium and tritium (DT) cryogenic layer, the target is imploded by rocket- like blow-off of the surrace materials; when the target is stagnated, the kinetic energy of the target is converted to internal energy of the compressed core plasma which consists of a high-temperature, low-density hot spark and a low-temperature and, high-density main fuel. If the areal density of the hot spark is large enough to stop the fusion- generated alpha particles, the hot spark will ignite and the burn wave will propagates through the main fuel before hydrodynamic disassembly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H. Takabe et al., Phys. Fluids28, 3676 (1985).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. R. Betti et al., Phys. Plasmas5, 1466 (1985).

    Google Scholar 

  3. S. Bodner, Phys. Rev. Lett.33, 761 (1974).

    Article  ADS  Google Scholar 

  4. H. J. Kull and S. I. Anisimov, Phys. Fluids29, 2067 (1986); J. Sanz, Phys. Rev. Lett 73, 2700 (1993); A. R Piriz, Phys. Plasmas 8, 997 (2001).

    Article  ADS  MATH  Google Scholar 

  5. M. Matsuoka et al., Rev. Sci. Instrum.70, 637(1999).

    Article  ADS  Google Scholar 

  6. N. M. Ceglio et al., J. Appl. Phys.48, 1566 (1977).

    Article  ADS  Google Scholar 

  7. C. Cauchon et al., Rev. Sci. Instrum.69, 3186 (1998).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Azechi, H. et al. (2002). Rayleigh Taylor and Laser Imprinting Diagnostics. In: Stott, P.E., Wootton, A., Gorini, G., Sindoni, E., Batani, D. (eds) Advanced Diagnostics for Magnetic and Inertial Fusion. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8696-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-8696-2_29

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4613-4669-2

  • Online ISBN: 978-1-4419-8696-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics