Skip to main content

FLT3 Inhibitors as Therapeutic Agents in MLL Rearranged Acute Lymphoblastic Leukemia

  • Chapter
  • First Online:
New Agents for the Treatment of Acute Lymphoblastic Leukemia

Abstract

Constitutively activated FLT3 as a consequence of mutation has rapidly become a hallmark of acute myeloid leukemia (AML). With the prompt development of several small molecule FLT3 inhibitors and the current ongoing clinical trials using such compounds, FLT3 inhibition seems well on its way to soon becoming incorporated routinely into AML treatment protocols. In acute lymphoblastic leukemia (ALL), constitutively activated FLT3 appears to be an attractive therapeutic target particularly for patients carrying unfavorable translocations of the MLL gene. Here, we review the accomplishments regarding FLT3 inhibition in AML, and in parallel describe the trailing exploration of the potential of FLT3 inhibitors as therapeutic agents in MLL rearranged ALL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O. Rosnet, and D. Birnbaum, Hematopoietic receptors of class III receptor-type tyrosine kinases. Crit Rev Oncog. 1993; 4:595–613.

    PubMed  CAS  Google Scholar 

  2. O. Rosnet, H.J. Buhring, S. Marchetto, I. Rappold, C. Lavagna, D. Sainty, C. Arnoulet, C. Chabannon, L. Kanz, C. Hannum, and D. Birnbaum, Human FLT3/FLK2 receptor tyrosine kinase is expressed at the surface of normal and malignant hematopoietic cells. Leukemia. 1996; 10:238–48.

    PubMed  CAS  Google Scholar 

  3. K. Mackarehtschian, J.D. Hardin, K.A. Moore, S. Boast, S.P. Goff, and I.R. Lemischka, Targeted disruption of the flk2/flt3 gene leads to deficiencies in primitive hematopoietic progenitors. Immunity. 1995; 3:147–61.

    Article  PubMed  CAS  Google Scholar 

  4. J. Griffith, J. Black, C. Faerman, L. Swenson, M. Wynn, F. Lu, J. Lippke, and K. Saxena, The structural basis for autoinhibition of FLT3 by the juxtamembrane domain. Mol Cell. 2004; 13:169–78.

    Article  PubMed  CAS  Google Scholar 

  5. C. Hannum, J. Culpepper, D. Campbell, T. McClanahan, S. Zurawski, J.F. Bazan, R. Kastelein, S. Hudak, J. Wagner, J. Mattson, and et al., Ligand for FLT3/FLK2 receptor tyrosine kinase regulates growth of haematopoietic stem cells and is encoded by variant RNAs. Nature. 1994; 168:643–8.

    Article  Google Scholar 

  6. S.N. Savvides, T. Boone, and P. Andrew Karplus, Flt3 ligand structure and unexpected commonalities of helical bundles and cystine knots. Nat Struct Biol. 2000; 7:486–91.

    Article  PubMed  CAS  Google Scholar 

  7. D.L. Stirewalt, and J.P. Radich, The role of FLT3 in haematopoietic malignancies. Nat Rev Cancer. 2003; 3:650–65.

    Article  PubMed  CAS  Google Scholar 

  8. Y. Kikushige, G. Yoshimoto, T. Miyamoto, T. Iino, Y. Mori, H. Iwasaki, H. Niiro, K. Takenaka, K. Nagafuji, M. Harada, F. Ishikawa, and K. Akashi, Human Flt3 is expressed at the hemato­poietic stem cell and the granulocyte/macrophage progenitor stages to maintain cell survival. J Immunol. 2008; 180:7358–67.

    PubMed  CAS  Google Scholar 

  9. K.C. Weisel, S. Yildirim, E. Schweikle, L. Kanz, and R. Mohle, Regulation of FLT3 and its ligand in normal hematopoietic progenitor cells. Ann Hematol. 2009; 88:203–11.

    Article  PubMed  CAS  Google Scholar 

  10. M. Nakao, S. Yokota, T. Iwai, H. Kaneko, S. Horiike, K. Kashima, Y. Sonoda, T. Fujimoto, and S. Misawa, Internal tandem duplication of the flt3 gene found in acute myeloid leukemia. Leukemia. 1996; 10:1911–8.

    PubMed  CAS  Google Scholar 

  11. H. Kiyoi, R. Ohno, R. Ueda, H. Saito, and T. Naoe, Mechanism of constitutive activation of FLT3 with internal tandem duplication in the juxtamembrane domain. Oncogene. 2002; 21:2555–63.

    Article  PubMed  CAS  Google Scholar 

  12. T. Furitsu, T. Tsujimura, T. Tono, H. Ikeda, H. Kitayama, U. Koshimizu, H. Sugahara, J.H. Butterfield, L.K. Ashman, Y. Kanayama, and et al., Identification of mutations in the coding sequence of the proto-oncogene c-kit in a human mast cell leukemia cell line causing ligand-independent activation of c-kit product. J Clin Invest. 1993; 92:1736–44.

    Article  PubMed  CAS  Google Scholar 

  13. Y. Yamamoto, H. Kiyoi, Y. Nakano, R. Suzuki, Y. Kodera, S. Miyawaki, N. Asou, K. Kuriyama, F. Yagasaki, C. Shimazaki, H. Akiyama, K. Saito, M. Nishimura, T. Motoji, K. Shinagawa, A. Takeshita, H. Saito, R. Ueda, R. Ohno, and T. Naoe, Activating mutation of D835 within the activation loop of FLT3 in human hematologic malignancies. Blood. 2001; 97:2434–9.

    Article  PubMed  CAS  Google Scholar 

  14. M. Bianchini, E. Ottaviani, T. Grafone, B. Giannini, S. Soverini, C. Terragna, M. Amabile, P.P. Piccaluga, M. Malagola, M. Rondoni, C. Bosi, M. Baccarani, and G. Martinelli, Rapid detection of Flt3 mutations in acute myeloid leukemia patients by denaturing HPLC. Clin Chem. 2003; 49:1642–50.

    Article  PubMed  CAS  Google Scholar 

  15. R.W. Stam, M.L. den Boer, P. Schneider, M. Meier, H.B. Beverloo, and R. Pieters, D-HPLC analysis of the entire FLT3 gene in MLL rearranged and hyperdiploid acute lymphoblastic leukemia. Haematologica. 2007; 92:1565–8.

    Article  PubMed  CAS  Google Scholar 

  16. S. Frohling, C. Scholl, R.L. Levine, M. Loriaux, T.J. Boggon, O.A. Bernard, R. Berger, H. Dohner, K. Dohner, B.L. Ebert, S. Teckie, T.R. Golub, J. Jiang, M.M. Schittenhelm, B.H. Lee, J.D. Griffin, R.M. Stone, M.C. Heinrich, M.W. Deininger, B.J. Druker, and D.G. Gilliland, Identification of driver and passenger mutations of FLT3 by high-throughput DNA sequence analysis and functional assessment of candidate alleles. Cancer Cell. 2007; 12:501–13.

    Article  PubMed  CAS  Google Scholar 

  17. M.M. Schittenhelm, K.W. Yee, J.W. Tyner, L. McGreevey, A.D. Haley, A. Town, D.J. Griffith, T. Bainbridge, R.M. Braziel, A.M. O’Farrell, J.M. Cherrington, and M.C. Heinrich, FLT3 K663Q is a novel AML-associated oncogenic kinase: Determination of biochemical properties and sensitivity to Sunitinib (SU11248). Leukemia. 2006; 20:2008–14.

    Article  PubMed  CAS  Google Scholar 

  18. C. Choudhary, C. Muller-Tidow, W.E. Berdel, and H. Serve, Signal transduction of oncogenic Flt3. Int J Hematol. 2005; 82:93–9.

    Article  PubMed  CAS  Google Scholar 

  19. D. Small, FLT3 mutations: biology and treatment. Hematology. Am Soc Hematol Educ Program. 2006;178–84.

    Google Scholar 

  20. R. Zheng, A.D. Friedman, M. Levis, L. Li, E.G. Weir, and D. Small, Internal tandem duplication mutation of FLT3 blocks myeloid differentiation through suppression of C/EBPalpha expression. Blood. 2004; 103:1883–90.

    Article  PubMed  CAS  Google Scholar 

  21. H.S. Radomska, D.S. Basseres, R. Zheng, P. Zhang, T. Dayaram, Y. Yamamoto, D.W. Sternberg, N. Lokker, N.A. Giese, S.K. Bohlander, S. Schnittger, M.H. Delmotte, R.J. Davis, D. Small, W. Hiddemann, D.G. Gilliland, and D.G. Tenen, Block of C/EBP alpha function by phosphorylation in acute myeloid leukemia with FLT3 activating mutations. J Exp Med. 2006; 203:371–81.

    Article  PubMed  CAS  Google Scholar 

  22. A. Sallmyr, J. Fan, K. Datta, K.T. Kim, D. Grosu, P. Shapiro, D. Small, and F. Rassool, Internal tandem duplication of FLT3 (FLT3/ITD) induces increased ROS production, DNA damage, and misrepair: implications for poor prognosis in AML. Blood. 2008; 111:3173–82.

    Article  PubMed  CAS  Google Scholar 

  23. M. Mizuki, R. Fenski, H. Halfter, I. Matsumura, R. Schmidt, C. Muller, W. Gruning, K. Kratz-Albers, S. Serve, C. Steur, T. Buchner, J. Kienast, Y. Kanakura, W.E. Berdel, and H. Serve, Flt3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STAT5 pathways. Blood. 2000; 96:3907–14.

    PubMed  CAS  Google Scholar 

  24. K. Spiekermann, K. Bagrintseva, R. Schwab, K. Schmieja, and W. Hiddemann, Overexpression and constitutive activation of FLT3 induces STAT5 activation in primary acute myeloid leukemia blast cells. Clin Cancer Res. 2003; 9:2140–50.

    PubMed  CAS  Google Scholar 

  25. K.F. Tse, G. Mukherjee, and D. Small, Constitutive activation of FLT3 stimulates multiple intracellular signal transducers and results in transformation. Leukemia. 2000; 14:1766–76.

    Article  PubMed  CAS  Google Scholar 

  26. P.D. Kottaridis, R.E. Gale, S.E. Langabeer, M.E. Frew, D.T. Bowen, and D.C. Linch, Studies of FLT3 mutations in paired presentation and relapse samples from patients with acute myeloid leukemia: implications for the role of FLT3 mutations in leukemogenesis, minimal residual disease detection, and possible therapy with FLT3 inhibitors. Blood. 2002; 100:2393–8.

    Article  PubMed  CAS  Google Scholar 

  27. L.Y. Shih, C.F. Huang, J.H. Wu, P.N. Wang, T.L. Lin, P. Dunn, M.C. Chou, M.C. Kuo, and C.C. Tang, Heterogeneous patterns of FLT3 Asp(835) mutations in relapsed de novo acute myeloid leukemia: a comparative analysis of 120 paired diagnostic and relapse bone marrow samples. Clin Cancer Res. 2004; 10:1326–32.

    Article  Google Scholar 

  28. D.G. Gilliland, and J.D. Griffin, The roles of FLT3 in hematopoiesis and leukemia. Blood. 2002; 100:1532–42.

    Article  PubMed  CAS  Google Scholar 

  29. S. Meshinchi, T.A. Alonzo, D.L. Stirewalt, M. Zwaan, M. Zimmerman, D. Reinhardt, G.J. Kaspers, N.A. Heerema, R. Gerbing, B.J. Lange, and J.P. Radich, Clinical implications of FLT3 mutations in pediatric AML. Blood. 2006; 108:3654–61.

    Article  PubMed  CAS  Google Scholar 

  30. F.M. Abu-Duhier, A.C. Goodeve, G.A. Wilson, R.S. Care, I.R. Peake, and J.T. Reilly, Identification of novel FLT-3 Asp835 mutations in adult acute myeloid leukemia. Br J Haematol. 2001; 113:983–8.

    Article  PubMed  CAS  Google Scholar 

  31. S. Meshinchi, D.L. Stirewalt, T.A. Alonzo, Q. Zhang, D.A. Sweetser, W.G. Woods, I.D. Bernstein, R.J. Arceci, and J.P. Radich, Activating mutations of RTK/ras signal transduction pathway in pediatric acute myeloid leukemia. Blood. 2003; 102:1474–9.

    Article  PubMed  CAS  Google Scholar 

  32. C. Thiede, C. Steudel, B. Mohr, M. Schaich, U. Schakel, U. Platzbecker, M. Wermke, M. Bornhauser, M. Ritter, A. Neubauer, G. Ehninger, and T. Illmer, Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood. 2002; 99:4326–35.

    Article  PubMed  CAS  Google Scholar 

  33. M. Braoudaki, M. Karpusas, K. Katsibardi, C. Papathanassiou, K. Karamolegou, and F. Tzortzatou-Stathopoulou, Frequency of FLT3 mutations in childhood acute lymphoblastic leukemia. Med Oncol. 2008; 26:460–2.

    Article  PubMed  Google Scholar 

  34. T. Taketani, T. Taki, K. Sugita, Y. Furuichi, E. Ishii, R. Hanada, M. Tsuchida, K. Ida, and Y. Hayashi, FLT3 mutations in the activation loop of tyrosine kinase domain are frequently found in infant ALL with MLL rearrangements and pediatric ALL with hyperdiploidy. Blood. 2004; 103:1085–8.

    Article  PubMed  CAS  Google Scholar 

  35. A. Andersson, K. Paulsson, H. Lilljebjorn, C. Lassen, B. Strombeck, J. Heldrup, M. Behrendtz, B. Johansson, and T. Fioretos, FLT3 mutations in a 10 year consecutive series of 177 childhood acute leukemias and their impact on global gene expression patterns. Genes Chromosomes Cancer. 2008; 47:64–70.

    Article  PubMed  CAS  Google Scholar 

  36. K. Paulsson, A. Horvat, B. Strombeck, F. Nilsson, J. Heldrup, M. Behrendtz, E. Forestier, A. Andersson, T. Fioretos, and B. Johansson, Mutations of FLT3, NRAS, KRAS, and PTPN11 are frequent and possibly mutually exclusive in high hyperdiploid childhood acute lymphoblastic leukemia. Genes Chromosomes Cancer. 2008; 47:26–33.

    Article  PubMed  CAS  Google Scholar 

  37. S.A. Armstrong, M.E. Mabon, L.B. Silverman, A. Li, J.G. Gribben, E.A. Fox, S.E. Sallan, and S.J. Korsmeyer, FLT3 mutations in childhood acute lymphoblastic leukemia. Blood. 2004; 103:3544–6.

    Article  PubMed  CAS  Google Scholar 

  38. S.A. Armstrong, A.L. Kung, M.E. Mabon, L.B. Silverman, R.W. Stam, M.L. Den Boer, R. Pieters, J.H. Kersey, S.E. Sallan, J.A. Fletcher, T.R. Golub, J.D. Griffin, and S.J. Korsmeyer, Inhibition of FLT3 in MLL. Validation of a therapeutic target identified by gene expression based classification. Cancer Cell. 2003; 3:173–83.

    Article  PubMed  CAS  Google Scholar 

  39. R.W. Stam, M.L. den Boer, P. Schneider, P. Nollau, M. Horstmann, H.B. Beverloo, E. van der Voort, M.G. Valsecchi, P. de Lorenzo, S.E. Sallan, S.A. Armstrong, and R. Pieters, Targeting FLT3 in primary MLL-gene-rearranged infant acute lymphoblastic leukemia. Blood. 2005; 106:2484–90.

    Article  PubMed  CAS  Google Scholar 

  40. S.A. Armstrong, J.E. Staunton, L.B. Silverman, R. Pieters, M.L. den Boer, M.D. Minden, S.E. Sallan, E.S. Lander, T.R. Golub, and S.J. Korsmeyer, MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat Genet. 2002; 30:41–7.

    Article  PubMed  CAS  Google Scholar 

  41. P. Brown, M. Levis, S. Shurtleff, D. Campana, J. Downing, and D. Small, FLT3 inhibition selectively kills childhood acute lymphoblastic leukemia cells with high levels of FLT3 expression. Blood. 2005; 105:812–20.

    Article  PubMed  CAS  Google Scholar 

  42. R.W. Stam, P. Schneider, P. de Lorenzo, M.G. Valsecchi, M.L. den Boer, and R. Pieters, Prognostic significance of high-level FLT3 expression in MLL-rearranged infant acute lymphoblastic leukemia. Blood. 2007; 110:2774–5.

    Article  PubMed  CAS  Google Scholar 

  43. K. Ozeki, H. Kiyoi, Y. Hirose, M. Iwai, M. Ninomiya, Y. Kodera, S. Miyawaki, K. Kuriyama, C. Shimazaki, H. Akiyama, M. Nishimura, T. Motoji, K. Shinagawa, A. Takeshita, R. Ueda, R. Ohno, N. Emi, and T. Naoe, Biologic and clinical significance of the FLT3 transcript level in acute myeloid leukemia. Blood. 2004; 103:1901–8.

    Article  PubMed  CAS  Google Scholar 

  44. E. Weisberg, C. Boulton, L.M. Kelly, P. Manley, D. Fabbro, T. Meyer, D.G. Gilliland, and J.D. Griffin, Inhibition of mutant FLT3 receptors in leukemia cells by the small molecule tyrosine kinase inhibitor PKC412. Cancer Cell. 2002; 1:433–43.

    Article  PubMed  CAS  Google Scholar 

  45. M. Levis, J. Allebach, K.F. Tse, R. Zheng, B.R. Baldwin, B.D. Smith, S. Jones-Bolin, B. Ruggeri, C. Dionne, and D. Small, A FLT3-targeted tyrosine kinase inhibitor is cytotoxic to leukemia cells in vitro and in vivo. Blood. 2002; 99:3885–91.

    Article  PubMed  CAS  Google Scholar 

  46. A.M. O’Farrell, T.J. Abrams, H.A. Yuen, T.J. Ngai, S.G. Louie, K.W. Yee, L.M. Wong, W. Hong, L.B. Lee, A. Town, B.D. Smolich, W.C. Manning, L.J. Murray, M.C. Heinrich, and J.M. Cherrington, SU11248 is a novel FLT3 tyrosine kinase inhibitor with potent activity in vitro and in vivo. Blood. 2003; 101:3597–605.

    Article  PubMed  Google Scholar 

  47. K. Spiekermann, R.J. Dirschinger, R. Schwab, K. Bagrintseva, F. Faber, C. Buske, S. Schnittger, L.M. Kelly, D.G. Gilliland, and W. Hiddemann, The protein tyrosine kinase inhibitor SU5614 inhibits FLT3 and induces growth arrest and apoptosis in AML-derived cell lines expressing a constitutively activated FLT3. Blood. 2003; 101:1494–504.

    Article  PubMed  CAS  Google Scholar 

  48. F.J. Giles, A.T. Stopeck, L.R. Silverman, J.E. Lancet, M.A. Cooper, A.L. Hannah, J.M. Cherrington, A.M. O’Farrell, H.A. Yuen, S.G. Louie, W. Hong, J.E. Cortes, S. Verstovsek, M. Albitar, S.M. O’Brien, H.M. Kantarjian, and J.E. Karp, SU5416, a small molecule tyrosine kinase receptor inhibitor, has biologic activity in patients with refractory acute myeloid leukemia or myelodysplastic syndromes. Blood. 2003; 102:795–801.

    Article  PubMed  CAS  Google Scholar 

  49. L.Q. Chow, and S.G. Eckhardt, Sunitinib: from rational design to clinical efficacy. J Clin Oncol. 2007; 25:884–96.

    Article  PubMed  CAS  Google Scholar 

  50. D. Fabbro, S. Ruetz, S. Bodis, M. Pruschy, K. Csermak, A. Man, P. Campochiaro, J. Wood, T. O’Reilly, and T. Meyer, PKC412--a protein kinase inhibitor with a broad therapeutic potential. Anticancer Drug Des. 2000; 15:17–28.

    PubMed  CAS  Google Scholar 

  51. D.J. George, C.A. Dionne, J. Jani, T. Angeles, C. Murakata, J. Lamb, and J.T. Isaacs, Sustained in vivo regression of Dunning H rat prostate cancers treated with combinations of androgen ablation and Trk tyrosine kinase inhibitors, CEP-751 (KT-6587) or CEP-701 (KT-5555). Cancer Res. 1999; 59:2395–401.

    PubMed  CAS  Google Scholar 

  52. S. Knapper, K.I. Mills, A.F. Gilkes, S.J. Austin, V. Walsh, and A.K. Burnett, The effects of lestaurtinib (CEP701) and PKC412 on primary AML blasts: the induction of cytotoxicity varies with dependence on FLT3 signaling in both FLT3-mutated and wild-type cases. Blood. 2006; 108:3494–503.

    Article  PubMed  CAS  Google Scholar 

  53. K.W. Yee, M. Schittenhelm, A.M. O’Farrell, A.R. Town, L. McGreevey, T. Bainbridge, J.M. Cherrington, and M.C. Heinrich, Synergistic effect of SU11248 with cytarabine or daunorubicin on FLT3 ITD-positive leukemic cells. Blood. 2004; 104:4202–9.

    Article  PubMed  CAS  Google Scholar 

  54. P. Brown, S. Meshinchi, M. Levis, T.A. Alonzo, R. Gerbing, B. Lange, R. Arceci, and D. Small, Pediatric AML primary samples with FLT3/ITD mutations are preferentially killed by FLT3 inhibition. Blood. 2004; 104:1841–9.

    Article  PubMed  CAS  Google Scholar 

  55. A.J. Mead, R.E. Gale, P.D. Kottaridis, S. Matsuda, A. Khwaja, and D.C. Linch, Acute myeloid leukemia blast cells with a tyrosine kinase domain mutation of FLT3 are less sensitive to lestaurtinib than those with a FLT3 internal tandem duplication. Br J Haematol. 2008; 141:454–60.

    Article  PubMed  CAS  Google Scholar 

  56. R. Grundler, C. Thiede, C. Miething, C. Steudel, C. Peschel, and J. Duyster, Sensitivity toward tyrosine kinase inhibitors varies between different activating mutations of the FLT3 receptor. Blood. 2003; 102:646–51.

    Article  PubMed  CAS  Google Scholar 

  57. J.J. Clark, J. Cools, D.P. Curley, J.C. Yu, N.A. Lokker, N.A. Giese, and D.G. Gilliland, Variable sensitivity of FLT3 activation loop mutations to the small molecule tyrosine kinase inhibitor MLN518. Blood. 2004; 104:2867–72.

    Article  PubMed  CAS  Google Scholar 

  58. E.V. Barry, J.J. Clark, J. Cools, J. Roesel, and D.G. Gilliland, Uniform sensitivity of FLT3 activation loop mutants to the tyrosine kinase inhibitor midostaurin. Blood. 2007; 110:4476-9.

    Article  PubMed  CAS  Google Scholar 

  59. B.D. Smith, M. Levis, M. Beran, F. Giles, H. Kantarjian, K. Berg, K.M. Murphy, T. Dauses, J. Allebach, and D. Small, Single-agent CEP-701, a novel FLT3 inhibitor, shows biologic and clinical activity in patients with relapsed or refractory acute myeloid leukemia. Blood. 2004; 103:3669–76.

    Article  PubMed  CAS  Google Scholar 

  60. S. Knapper, A.K. Burnett, T. Littlewood, W.J. Kell, S. Agrawal, R. Chopra, R. Clark, M.J. Levis, and D. Small, A phase 2 trial of the FLT3 inhibitor lestaurtinib (CEP701) as first-line treatment for older patients with acute myeloid leukemia not considered fit for intensive chemotherapy. Blood. 2006; 108:3262–70.

    Article  PubMed  CAS  Google Scholar 

  61. R.M. Stone, D.J. DeAngelo, V. Klimek, I. Galinsky, E. Estey, S.D. Nimer, W. Grandin, D. Lebwohl, Y. Wang, P. Cohen, E.A. Fox, D. Neuberg, J. Clark, D.G. Gilliland, and J.D. Griffin, Patients with acute myeloid leukemia and an activating mutation in FLT3 respond to a small-molecule FLT3 tyrosine kinase inhibitor, PKC412. Blood. 2005; 105:54–60.

    Article  PubMed  CAS  Google Scholar 

  62. D.J. DeAngelo, R.M. Stone, M.L. Heaney, S.D. Nimer, R.L. Paquette, R.B. Klisovic, M.A. Caligiuri, M.R. Cooper, J.M. Lecerf, M.D. Karol, S. Sheng, N. Holford, P.T. Curtin, B.J. Druker, and M.C. Heinrich, Phase 1 clinical results with tandutinib (MLN518), a novel FLT3 antagonist, in patients with acute myelogenous leukemia or high-risk myelodysplastic syndrome: safety, pharmacokinetics, and pharmacodynamics. Blood. 2006; 108:3674–81.

    Article  PubMed  CAS  Google Scholar 

  63. M. Levis, R. Pham, B.D. Smith, and D. Small, In vitro studies of a FLT3 inhibitor combined with chemotherapy: sequence of administration is important to achieve synergistic cytotoxic effects. Blood. 2004; 104:1145–50.

    Article  PubMed  CAS  Google Scholar 

  64. L. Mollgard, S. Deneberg, H. Nahi, S. Bengtzen, K. Jonsson-Videsater, T. Fioretos, A. Andersson, C. Paul, and S. Lehmann, The FLT3 inhibitor PKC412 in combination with cytostatic drugs in vitro in acute myeloid leukemia. Cancer Chemother Pharmacol. 2008; 62:439–48.

    Article  PubMed  Google Scholar 

  65. S. Kasper, F. Breitenbuecher, Y. Hoehn, F. Heidel, D.B. Lipka, B. Markova, C. Huber, T. Kindler, and T. Fischer, The kinase inhibitor LS104 induces apoptosis, enhances cytotoxic effects of chemotherapeutic drugs and is targeting the receptor tyrosine kinase FLT3 in acute myeloid leukemia. Leuk Res. 2008; 32:1698–708.

    Article  PubMed  CAS  Google Scholar 

  66. M. Levis, P. Brown, B.D. Smith, A. Stine, R. Pham, R. Stone, D. Deangelo, I. Galinsky, F. Giles, E. Estey, H. Kantarjian, P. Cohen, Y. Wang, J. Roesel, J.E. Karp, and D. Small, Plasma inhibitory activity (PIA): a pharmacodynamic assay reveals insights into the basis for cytotoxic response to FLT3 inhibitors. Blood. 2006; 108:3477–83.

    Article  PubMed  CAS  Google Scholar 

  67. G.W. Krystal, Mechanisms of resistance to imatinib (STI571) and prospects for combination with conventional chemotherapeutic agents. Drug Resist Updat. 2001; 4:16–21.

    Article  PubMed  CAS  Google Scholar 

  68. M.W. Drummond, and T.L. Holyoake, Tyrosine kinase inhibitors in the treatment of chronic myeloid leukemia: so far so good? Blood Rev. 2001; 15:85–95.

    Article  PubMed  CAS  Google Scholar 

  69. S.H. Chu, and D. Small, Mechanisms of resistance to FLT3 inhibitors. Drug Resist Updat. 2009; 12:8–16.

    Article  PubMed  CAS  Google Scholar 

  70. F. Heidel, F.K. Solem, F. Breitenbuecher, D.B. Lipka, S. Kasper, M.H. Thiede, C. Brandts, H. Serve, J. Roesel, F. Giles, E. Feldman, G. Ehninger, G.J. Schiller, S. Nimer, R.M. Stone, Y. Wang, T. Kindler, P.S. Cohen, C. Huber, and T. Fischer, Clinical resistance to the kinase inhibitor PKC412 in acute myeloid leukemia by mutation of Asn-676 in the FLT3 tyrosine kinase domain. Blood. 2006; 107:293–300.

    Article  PubMed  CAS  Google Scholar 

  71. O. Piloto, M. Wright, P. Brown, K.T. Kim, M. Levis, and D. Small, Prolonged exposure to FLT3 inhibitors leads to resistance via activation of parallel signaling pathways. Blood. 2007; 109:1643–52.

    Article  PubMed  CAS  Google Scholar 

  72. T.M. Kohl, C. Hellinger, F. Ahmed, C. Buske, W. Hiddemann, S.K. Bohlander, and K. Spiekermann, BH3 mimetic ABT-737 neutralizes resistance to FLT3 inhibitor treatment mediated by FLT3-independent expression of BCL2 in primary AML blasts. Leukemia. 2007; 21:1763–72.

    Article  PubMed  CAS  Google Scholar 

  73. F. Breitenbuecher, B. Markova, S. Kasper, B. Carius, T. Stauder, F.D. Bohmer, K. Masson, L. Ronnstrand, C. Huber, T. Kindler, and T. Fischer, A novel molecular mechanism of primary resistance to FLT3-kinase inhibitors in acute myeloid leukemia. Blood. 2009; 113:4063-73.

    Article  PubMed  CAS  Google Scholar 

  74. U. Mony, M. Jawad, C. Seedhouse, N. Russell, and M. Pallis, Resistance to FLT3 inhibition in an in vitro model of primary AML cells with a stem cell phenotype in a defined microenvironment. Leukemia. 2008; 22:1395–401.

    Article  PubMed  CAS  Google Scholar 

  75. N.P. Shah, C. Tran, F.Y. Lee, P. Chen, D. Norris, and C.L. Sawyers, Overriding imatinib resistance with a novel ABL kinase inhibitor. Science. 2004; 305:399–401.

    Article  PubMed  CAS  Google Scholar 

  76. F. Heidel, D.B. Lipka, F.K. Mirea, S. Mahboobi, R. Grundler, R.K. Kancha, J. Duyster, M. Naumann, C. Huber, F.D. Bohmer, and T. Fischer, Bis(1H-indol-2-yl)methanones are effective inhibitors of FLT3-ITD tyrosine kinase and partially overcome resistance to PKC412A in vitro. Br J Haematol. 2009; 144:865–74.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rob Pieters .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC 2011

About this chapter

Cite this chapter

Stam, R.W., Pieters, R. (2011). FLT3 Inhibitors as Therapeutic Agents in MLL Rearranged Acute Lymphoblastic Leukemia. In: Saha, V., Kearns, P. (eds) New Agents for the Treatment of Acute Lymphoblastic Leukemia. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-8459-3_10

Download citation

Publish with us

Policies and ethics