Skip to main content

Folate Receptor-Targeted Radionuclide Imaging Agents

  • Chapter
  • First Online:
Targeted Drug Strategies for Cancer and Inflammation

Abstract

Diagnostic nuclear medicine makes use of two molecular imaging ­technologies, single-photon emission computed tomography (SPECT) and positron emission tomography (PET). SPECT and PET can be used to noninvasively identify and localize cancerous tumors through the use of marker proteins which are overproduced in cancer cells. The folate receptor (FR) is one such protein which is overexpressed in a variety of cancer types, with highest frequency observed in ovarian and endometrial carcinomas (>95% of the cases). The FR is therefore an ideal structure for nuclear imaging using FR-targeted radiopharmaceuticals. A variety of folic acid conjugates have been developed with chelating systems suitable for radiolabeling with SPECT isotopes (99mTc, 111In, 67Ga) and PET isotopes (66/68Ga, 64Cu, 18F). Virtually all folate radiotracers bind specifically to FR-positive cancer cells (e.g., KB, M109, 24JK-FBP) in vitro. Similarly, in vivo FR-specific tumor accumulation using the same radiotracers has been studied in tumor bearing mice. However, the in vivo tissue distribution varies significantly among different radiofolates and is well correlated with the compound’s hydrophobicity. The uptake of radiofolates in FR-positive tumors is generally high and receptor specific. Undesired accumulation of radioactivity in the intestinal tract has been found primarily with strongly lipophilic derivatives, whereas almost exclusive renal elimination has been observed to occur with more hydrophilic conjugates. As a consequence of the specific binding to FRs that are expressed in renal proximal tubule cells, all radiofolates accumulate in the kidneys. Although this feature is less critical from a dosimetric point of view for most radionuclides used for SPECT and PET, it is still undesirable because this feature obscures identification of radiofolate uptake in small lesions. Thus, the development of methods to reduce kidney uptake is of importance both for diagnostic applications of folate-based radioimaging agents and for potential therapeutic applications using particle-emitting folate radioconjugates. This chapter will review the state of the art of folate-targeted radioconjugates and related imaging and therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberto R, Schibli R, Egli A et al (1995) Metal carbonyl syntheses. XXII. Low-pressure carbonylation of [MOCl4] and [MO4]. The technetium(I) and rhenium(I) complexes [NEt4]2[MCl3(CO)3]. J Organomet Chem 492(2):217–224

    Article  Google Scholar 

  • Alberto R, Schibli R, Egli A et al (1998) A novel organometallic aqua complex of technetium for the labeling of biomolecules: synthesis of [99mTc(OH2)3(CO)3]+ from [99mTcO4] in aqueous solution and its reaction with a bifunctional ligand. J Am Chem Soc 120(31):7987–7988

    Article  CAS  Google Scholar 

  • Alberto R, Schibli R, Waibel R et al (1999) Basic aqueous chemistry of [M(OH2)3(CO)3]+ (M = Re, Tc) directed towards radiopharmaceutical application. Coord Chem Rev 192:901–919

    Article  Google Scholar 

  • Alford R, Ogawa M, Choyke PL et al (2009) Molecular probes for the in vivo imaging of cancer. Mol Biosyst 5(11):1279–1291

    Article  PubMed  CAS  Google Scholar 

  • Antich P, Kulkarni PV, Constantinescu A et al (1994) Imaging of folate receptors with I-125 labeled folate using small animal imaging system built with plastic scintillating optical fibers. J Nucl Med 35(5):P222

    Google Scholar 

  • Antony AC (1992) The biological chemistry of folate receptors. Blood 79(11):2807–2820

    PubMed  CAS  Google Scholar 

  • Antony AC (1996) Folate receptors. Annu Rev Nutr 16:501–521

    Article  PubMed  CAS  Google Scholar 

  • Barentsz J, Takahashi S, Oyen W et al (2006) Commonly used imaging techniques for diagnosis and staging. J Clin Oncol 24(20):3234–3244

    Article  PubMed  CAS  Google Scholar 

  • Bettio A, Honer M, Müller C et al (2006) Synthesis and preclinical evaluation of a folic acid derivative labeled with 18F for PET imaging of folate receptor-positive tumors. J Nucl Med 47(7):1153–1160

    PubMed  CAS  Google Scholar 

  • Bharali DJ, Lucey DW, Jayakumar H et al (2005) Folate-receptor-mediated delivery of InP quantum dots for bioimaging using confocal and two-photon microscopy. J Am Chem Soc 127(32):11364–11371

    Article  PubMed  CAS  Google Scholar 

  • Birn H, Spiegelstein O, Christensen EI et al (2005) Renal tubular reabsorption of folate mediated by folate binding protein 1. J Am Soc Nephrol 16(3):608–615

    Article  PubMed  CAS  Google Scholar 

  • Brechbiel MW, Gansow OA, Atcher RW et al (1986) Synthesis of 1-(para-isothiocyanatobenzyl) derivatives of DTPA and EDTA – antibody labeling and tumor-imaging studies. Inorg Chem 25(16):2772–2781

    Article  CAS  Google Scholar 

  • Chen WT, Mahmood U, Weissleder R et al (2005) Arthritis imaging using a near-infrared fluorescence folate-targeted probe. Arthritis Res Ther 7(2):R310–R317

    Article  PubMed  CAS  Google Scholar 

  • Choi H, Choi SR, Zhou R et al (2004) Iron oxide nanoparticles as magnetic resonance contrast agent for tumor imaging via folate receptor-targeted delivery. Acad Radiol 11(9):996–1004

    Article  PubMed  Google Scholar 

  • Cooperman JM, Pesci-Bourel A, Luhby AL (1970) Urinary excretion of folic acid activity in man. Clin Chem 16(5):375–381

    PubMed  CAS  Google Scholar 

  • Dolle F (2005) Fluorine-18-labelled fluoropyridines: advances in radiopharmaceutical design. Curr Pharm Des 11(25):3221–3235

    Article  PubMed  CAS  Google Scholar 

  • Edwards DS, Liu S, Barrett JA et al (1997) New and versatile ternary ligand system for technetium radiopharmaceuticals: water soluble phosphines and tricine as coligands in labeling a hydrazinonicotinamide-modified cyclic glycoprotein IIb/IIIa receptor antagonist with 99mTc. Bioconjug Chem 8(2):146–154

    Article  PubMed  CAS  Google Scholar 

  • Egli A, Alberto R, Tannahill L et al (1999) Organometallic 99mTc-aquaion labels peptide to an unprecedented high specific activity. J Nucl Med 40(11):1913–1917

    PubMed  CAS  Google Scholar 

  • Esser JP, Krenning EP, Teunissen JJ et al (2006) Comparison of [177Lu-DOTA0, Tyr3]octreotate and [177Lu-DOTA0, Tyr3]octreotide: which peptide is preferable for PRRT? Eur J Nucl Med Mol Imaging 33(11):1346–1351

    Article  PubMed  CAS  Google Scholar 

  • Fisher RE, Siegel BA, Edell SL et al (2008) Exploratory study of 99mTc-EC20 imaging for identifying patients with folate receptor-positive solid tumors. J Nucl Med 49(6):899–906

    Article  PubMed  Google Scholar 

  • Guo WJ, Hinkle GH, Lee RJ (1999) 99mTc-HYNIC-folate: a novel receptor-based targeted radiopharmaceutical for tumor imaging. J Nucl Med 40(9):1563–1569

    PubMed  CAS  Google Scholar 

  • He W, Wang H, Hartmann LC et al (2007) In vivo quantitation of rare circulating tumor cells by multiphoton intravital flow cytometry. Proc Natl Acad Sci USA 104(28):11760–11765

    Article  PubMed  CAS  Google Scholar 

  • Hjelle JT, Christensen EI, Carone FA et al (1991) Cell fractionation and electron-microscope ­studies of kidney folate-binding protein. Am J Physiol 260(2):C338–C346

    PubMed  CAS  Google Scholar 

  • Iagaru AH, Mittra ES, McDougall IR et al (2008) 18F-FDG PET/CT evaluation of patients with ovarian carcinoma. Nucl Med Commun 29(12):1046–1051

    Article  PubMed  Google Scholar 

  • Ilgan S, Yang DJ, Higuchi T et al (1998) 99mTc-ethylenedicysteine-folate: a new tumor imaging agent. Synthesis, labeling and evaluation in animals. Cancer Biother Radiopharm 13(6):427–435

    Article  PubMed  CAS  Google Scholar 

  • Jansen FP, Vanderheyden JL (2007) The future of SPECT in a time of PET. Nucl Med Biol 34(7):733–735

    Article  PubMed  CAS  Google Scholar 

  • Jansen G, Kathmann I, Rademaker BC et al (1989) Expression of a folate binding-protein in L1210 cells grown in low folate medium. Cancer Res 49(8):1959–1963

    PubMed  CAS  Google Scholar 

  • Ke CY, Mathias CJ, Green MA (2000) Synthesis and evaluation of an In-111-labeled folate conjugate of “octadentate DTPA”. J Nucl Med 41(5):1032

    Google Scholar 

  • Ke CY, Mathias CJ, Green MA (2001) Targeting the tumor-associated folate receptor with a 111In-DTPA conjugate of pteroic acid. J Nucl Med 42(5):427

    Google Scholar 

  • Ke CY, Mathias CJ, Green MA (2004) Folate-receptor-targeted radionuclide imaging agents. Adv Drug Deliv Rev 56(8):1143–1160

    Article  PubMed  CAS  Google Scholar 

  • Kennedy MD, Jallad KN, Thompson DH et al (2003) Optical imaging of metastatic tumors using a folate-targeted fluorescent probe. J Biomed Opt 8(4):636–641

    Article  PubMed  Google Scholar 

  • Konda SD, Aref M, Brechbiel M et al (2000) Development of a tumor-targeting MR contrast agent using the high-affinity folate receptor: work in progress. Invest Radiol 35(1):50–57

    Article  PubMed  CAS  Google Scholar 

  • Konda SD, Aref M, Wang S et al (2001) Specific targeting of folate-dendrimer MRI contrast agents to the high affinity of late receptor expressed in ovarian tumor xenografts. Magma 12(2–3):104–113

    Article  PubMed  CAS  Google Scholar 

  • Konda SD, Wang S, Brechbiel M et al (2002) Biodistribution of a 153Gd-folate dendrimer, generation = 4, in mice with folate-receptor positive and negative ovarian tumor xenografts. Invest Radiol 37(4):199–204

    Article  PubMed  CAS  Google Scholar 

  • Kwekkeboom DJ, Bakker WH, Kooij PP et al (2001) [177Lu-DOTA0Tyr3]octreotate: comparison with [111In-DTPA0]octreotide in patients. Eur J Nucl Med 28(9):1319–1325

    Article  PubMed  CAS  Google Scholar 

  • Leamon CP, DePrince RB, Hendren RW (1999) Folate-mediated drug delivery: effect of alternative conjugation chemistry. J Drug Target 7(3):157–169

    Article  PubMed  CAS  Google Scholar 

  • Leamon CP, Parker MA, Vlahov IR et al (2002) Synthesis and biological evaluation of EC20: a new folate- derived, 99mTc-based radiopharmaceutical. Bioconjug Chem 13(6):1200–1210

    Article  PubMed  CAS  Google Scholar 

  • Linder KE, Wedeking P, Ramalingam K et al (2000) In vitro & in vivo studies with alpha-and gamma-isomers of 99mTc-oxa-folate show uptake of both isomers in folate-receptor positive KB cell lines. J Nucl Med 41(5):470

    Google Scholar 

  • Liu S, Edwards DS (1999) 99mTc-labeled small peptides as diagnostic radiopharmaceuticals. Chem Rev 99(9):2235–2268

    Article  PubMed  CAS  Google Scholar 

  • Low PS, Kularatne SA (2009) Folate-targeted therapeutic and imaging agents for cancer. Curr Opin Chem Biol 13(3):256–262

    Article  PubMed  CAS  Google Scholar 

  • Low PS, Henne WA, Doorneweerd DD (2008) Discovery and development of folic-acid-based receptor targeting for imaging and therapy of cancer and inflammatory diseases. Acc Chem Res 41(1):120–129

    Article  PubMed  CAS  Google Scholar 

  • Marik J, Sutcliffe JL (2006) Click for PET: rapid preparation of [18F]fluoropeptides using CuI catalyzed 1, 3-dipolar cycloaddition. Tetrahedron Lett 47(37):6681–6684

    Article  CAS  Google Scholar 

  • Mathias CJ, Green MA (1998) A kit formulation for preparation of [111In]In-DTPA-folate, a folate-receptor-targeted radiopharmaceutical. Nucl Med Biol 25(6):585–587

    Article  PubMed  CAS  Google Scholar 

  • Mathias CJ, Green MA (2000) Alternative kit formulations for compounding of 111In-DTPA-folate (folatescan). J Nucl Med 41(5):1113

    Google Scholar 

  • Mathias CJ, Wang S, Lee RJ et al (1996) Tumor-selective radiopharmaceutical targeting via receptor-mediated endocytosis of gallium-67-deferoxamine-folate. J Nucl Med 37(6):1003–1008

    PubMed  CAS  Google Scholar 

  • Mathias CJ, Wang S, Waters DJ et al (1998) Indium-111-DTPA-folate as a potential folate-receptor-targeted radiopharmaceutical. J Nucl Med 39(9):1579–1585

    PubMed  CAS  Google Scholar 

  • Mathias CJ, Wang S, Low PS et al (1999) Receptor-mediated targeting of 67Ga-­deferoxamine-folate to folate-receptor-positive human KB tumor xenografts. Nucl Med Biol 26(1):23–25

    Article  PubMed  CAS  Google Scholar 

  • Mathias CJ, Hubers D, Low PS et al (2000) Synthesis of [99mTc]DTPA-folate and its evaluation as a folate-receptor-targeted radiopharmaceutical. Bioconjug Chem 11(2):253–257

    Article  PubMed  CAS  Google Scholar 

  • Mathias CJ, Lewis MR, Reichert DE et al (2003) Preparation of 66Ga- and 68Ga-labeled Ga(III)-deferoxamine-folate as potential folate-receptor-targeted PET radiopharmaceuticals. Nucl Med Biol 30(7):725–731

    Article  PubMed  CAS  Google Scholar 

  • Matteson EL, Lowe VJ, Prendergast FG et al (2009) Assessment of disease activity in rheumatoid arthritis using a novel folate targeted radiopharmaceutical Folatescan. Clin Exp Rheumatol 27(2):253–259

    PubMed  CAS  Google Scholar 

  • McHugh M, Cheng YC (1979) Demonstration of a high affinity folate binder in human cell membranes and its characterization in cultured human KB cells. J Biol Chem 254(22):1312–1318

    Google Scholar 

  • McMartin KE, Morshed KM, Hazenmartin DJ et al (1992) Folate transport and binding by cultured human proximal tubule cells. Am J Physiol 263(5):F841–F848

    PubMed  CAS  Google Scholar 

  • Mindt TL, Müller C, Melis M et al (2008) “Click-to-chelate”: in vitro and in vivo comparison of a 99mTc(CO)3-labeled N(tau)-histidine folate derivative with its isostructural, clicked 1, 2, 3-triazole analogue. Bioconjug Chem 19(8):1689–1695

    Article  PubMed  CAS  Google Scholar 

  • Mindt TL, Müller C, Stuker F et al (2009) A “click chemistry” approach to the efficient synthesis of multiple imaging probes derived from a single precursor. Bioconjug Chem 20(10):1940–1949

    Article  PubMed  CAS  Google Scholar 

  • Miotti S, Facheris P, Tomassetti A et al (1995) Growth of ovarian-carcinoma cell-lines at physiological folate concentration – effect on folate-binding protein expression in-vitro and in-vivo. Int J Cancer 63(3):395–401

    Article  PubMed  CAS  Google Scholar 

  • Moon WK, Lin YH, O’Loughlin T et al (2003) Enhanced tumor detection using a folate receptor-targeted near-infrared fluorochrome conjugate. Bioconjug Chem 14(3):539–545

    Article  PubMed  CAS  Google Scholar 

  • Müller C, Dumas C, Hoffmann U et al (2004) Organometallic 99mTc-technetium(I)- and Re-rhenium(I)-folate derivatives for potential use in nuclear medicine. J Organomet Chem 689(25):4712–4721

    Article  Google Scholar 

  • Müller C, Brühlmeier M, Schubiger AP et al (2006a) Effects of antifolate drugs on the cellular uptake of radiofolates in vitro and in vivo. J Nucl Med 47(12):2057–2064

    PubMed  Google Scholar 

  • Müller C, Hohn A, Schubiger PA et al (2006b) Preclinical evaluation of novel organometallic 99mTc-folate and 99mTc-pteroate radiotracers for folate receptor-positive tumour targeting. Eur J Nucl Med Mol Imaging 33(9):1007–1016

    Article  PubMed  Google Scholar 

  • Müller C, Schubiger PA, Schibli R (2006c) Synthesis and in vitro/in vivo evaluation of novel 99mTc(CO)3-folates. Bioconjug Chem 17(3):797–806

    Article  PubMed  Google Scholar 

  • Müller C, Schibli R, Forrer F et al (2007a) Dose-dependent effects of (anti)folate preinjection on 99mTc-radiofolate uptake in tumors and kidneys. Nucl Med Biol 34(6):603–608

    Article  PubMed  Google Scholar 

  • Müller C, Schubiger PA, Schibli R (2007b) Isostructural folate conjugates radiolabeled with the matched pair 99mTc/188Re: a potential strategy for diagnosis and therapy of folate receptor-positive tumors. Nucl Med Biol 34(6):595–601

    Article  PubMed  Google Scholar 

  • Müller C, Forrer F, Schibli R et al (2008a) SPECT study of folate receptor-positive malignant and normal tissues in mice using a novel 99mTc-radiofolate. J Nucl Med 49(2):310–317

    Article  PubMed  Google Scholar 

  • Müller C, Schibli R, Krenning EP et al (2008b) Pemetrexed improves tumor selectivity of 111In-DTPA-folate in mice with folate receptor-positive ovarian cancer. J Nucl Med 49(4):623–629

    Article  PubMed  Google Scholar 

  • Müller C, Mindt TL, de Jong M et al (2009) Evaluation of a novel radiofolate in tumour-bearing mice: promising prospects for folate-based radionuclide therapy. Eur J Nucl Med Mol Imaging 36(6):938–946

    Article  PubMed  Google Scholar 

  • Parker N, Turk MJ, Westrick E et al (2005) Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal Biochem 338(2):284–293

    Article  PubMed  CAS  Google Scholar 

  • Reddy JA, Xu LC, Parker N et al (2004) Preclinical evaluation of 99mTc-EC20 for imaging folate receptor-positive tumors. J Nucl Med 45(5):857–866

    PubMed  CAS  Google Scholar 

  • Ross TL, Honer M, Lam PYH et al (2008) Fluorine-18 click radiosynthesis and preclinical evaluation of a new 18F-labeled folic acid derivative. Bioconjug Chem 19(12):2462–2470

    Article  PubMed  CAS  Google Scholar 

  • Rowland DJ, Cherry SR (2008) Small-animal preclinical nuclear medicine instrumentation and methodology. Semin Nucl Med 38(3):209–222

    Article  PubMed  Google Scholar 

  • Saborowski O, Simon GH, Raatschen HJ et al (2007) MR imaging of antigen-induced arthritis with a new, folate receptor-targeted contrast agent. Contrast Media Mol Imaging 2(2):72–81

    Article  PubMed  CAS  Google Scholar 

  • Schibli R, Schubiger PA (2002) Current use and future potential of organometallic radiopharmaceuticals. Eur J Nucl Med Mol Imaging 29(11):1529–1542

    Article  PubMed  CAS  Google Scholar 

  • Schibli R, La Bella R, Alberto R et al (2000) Influence of the denticity of ligand systems on the in vitro and in vivo behavior of 99mTc(I)-tricarbonyl complexes: a hint for the future functionalization of biomolecules. Bioconjug Chem 11(3):345–351

    Article  PubMed  CAS  Google Scholar 

  • Sega EI, Low PS (2008) Tumor detection using folate receptor-targeted imaging agents. Cancer Metastasis Rev 27(4):655–664

    Article  PubMed  CAS  Google Scholar 

  • Selhub J, Emmanouel D, Stavropoulos T et al (1987) Renal folate absorption and the kidney folate binding protein. I. Urinary clearance studies. Am J Physiol 252(4):F750–F756

    PubMed  CAS  Google Scholar 

  • Siegel BA, Dehdashti F, Mutch DG et al (2003) Evaluation of 111In-DTPA-folate as a receptor-targeted diagnostic agent for ovarian cancer: initial clinical results. J Nucl Med 44(5):700–707

    PubMed  CAS  Google Scholar 

  • Spanoudaki VC, Ziegler SI (2008) PET & SPECT instrumentation. Handb Exp Pharmacol (185 pt 1):53–74

    Google Scholar 

  • Sparr C, Michel U, Marti RE et al (2009) Synthesis of a novel gamma-folic acid-Nτ-histidine conjugate suitable for labeling with 99mTc and 188Re. Synthesis (Stuttg) (5):787–792

    Google Scholar 

  • Sun C, Sze R, Zhang M (2006) Folic acid-PEG conjugated superparamagnetic nanoparticles for targeted cellular uptake and detection by MRI. J Biomed Mater Res A 78(3):550–557

    PubMed  Google Scholar 

  • Swanson SD, Kukowska-Latallo JF, Patri AK et al (2008) Targeted gadolinium-loaded dendrimer nanoparticles for tumor-specific magnetic resonance contrast enhancement. Int J Nanomedicine 3(2):201–210

    Article  PubMed  CAS  Google Scholar 

  • Teunissen JJ, Kwekkeboom DJ, Krenning EP (2004) Quality of life in patients with gastroenteropancreatic tumors treated with [177Lu-DOTA0, Tyr3]octreotate. J Clin Oncol 22(13):2724–2729

    Article  PubMed  CAS  Google Scholar 

  • Trump DP, Mathias CJ, Yang ZF et al (2002) Synthesis and evaluation of 99mTc(CO)3-DTPA-folate as a folate-receptor-targeted radiopharmaceutical. Nucl Med Biol 29(5):569–573

    Article  PubMed  CAS  Google Scholar 

  • Tung CH, Lin YH, Moon WK et al (2002) A receptor-targeted near-infrared fluorescence probe for in vivo tumor imaging. Chembiochem 3(8):784–786

    Article  PubMed  CAS  Google Scholar 

  • Walling J (2006) From methotrexate to pemetrexed and beyond. A review of the pharmacodynamic and clinical properties of antifolates. Invest New Drugs 24(1):37–77

    Article  PubMed  Google Scholar 

  • Walton L (1981) Preparation of a 125I-labelled conjugate of pteroylglutamic acid and its use in a radio ligand assay of folate in blood. Med Lab Sci 38(3):187–195

    PubMed  CAS  Google Scholar 

  • Wang S, Lee RJ, Mathias CJ et al (1996) Synthesis, purification, and tumor cell uptake of 67Ga-deferoxamine-folate, a potential radiopharmaceutical for tumor imaging. Bioconjug Chem 7(1):56–62

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Luo J, Lantrip DA et al (1997) Design and synthesis of [111In]DTPA-folate for use as a tumor-targeted radiopharmaceutical. Bioconjug Chem 8(5):673–679

    Article  PubMed  CAS  Google Scholar 

  • Wedeking PW, Wager RE, Arunachalam T et al (2001) Metal complexes derivatized with folate for use in diagnostic and therapeutic applications. US Patent 6221334

    Google Scholar 

  • Weitman SD, Lark RH, Coney LR et al (1992) Distribution of the folate receptor GP38 in normal and malignant cell lines and tissues. Cancer Res 52(12):3396–3401

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Müller, C., Schibli, R. (2011). Folate Receptor-Targeted Radionuclide Imaging Agents. In: Jackman, A., Leamon, C. (eds) Targeted Drug Strategies for Cancer and Inflammation. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-8417-3_4

Download citation

Publish with us

Policies and ethics