Skip to main content

Low-Temperature Fuel Cell Technology for Green Energy

  • Reference work entry
Handbook of Climate Change Mitigation

Abstract

Fuel cells convert chemical energy to electrical energy via an electrochemical reaction. They are more efficient than traditional heat engine–based power systems and can have zero or near-zero emissions during operation. A leading alternative green energy technology, fuel cells are finding applications in many areas, including transportation, portable power, and stationary power generation. These divergent uses have driven development of several different types of fuel cell technologies. A brief overview of these will be provided in this chapter; however, the focus will be on low-temperature proton exchange membrane (PEM) technologies predominant in portable power and automotive applications. Fuel cell operating principles will be reviewed, focusing on thermodynamics, efficiency, reaction kinetics, and transport phenomena in order to develop a framework for evaluating different fuel cells and comparing them with other power systems. Theoretically, much improvement in fuel cell performance is possible, and is needed along with means of lowering economic costs in order for fuel cells to see more widespread use. Some of the major technical challenges in these regards are outlined along with approaches being investigated to meet these challenges. Life cycle assessment and its application to fuel cells will be discussed to evaluate environmental impacts associated with manufacturing, operation, and disposal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Srinivasan S, Renaut M, Phillippe S, Christopher Y (1999) Fuel cells: reaching the era of clean and efficient power generation in the twenty-first century. Annu Rev Energy Environ 24:281–328

    Article  Google Scholar 

  2. FCB (2003) NEC unveils fully integrated fuel cell notebook PC. Fuel Cells Bull 2003(8):1

    Google Scholar 

  3. FCB (2005) LG Chem commercializes portable fuel cell. Fuel Cells Bull 2005:5

    Google Scholar 

  4. Oil Gas European Magazine (2001) On road to world's first hydrogen economy. Oil Gas Eur Mag 27:9

    Google Scholar 

  5. FCB (2004) In brief: Fuel cell buses operational in Perth. Fuel Cells Bull 7

    Google Scholar 

  6. Energy World (2004) Zero-emission fuel cell buses for 10 European cities. Energy World 18

    Google Scholar 

  7. FCB (2007) Honda to start leasing fuel cell cars in US. Fuel Cell Bull 2007:6

    Google Scholar 

  8. FCB (2007) In brief: Ford, GM focused on contrasting records for their FCVs. Fuel Cell Bull 2007:11

    Google Scholar 

  9. O’Hayre R, Cha S-W, Colella W, Prinz FB (2009) Fuel cell fundamentals, 2nd edn. Wiley, Hoboken, NJ

    Google Scholar 

  10. Larminie J, Dicks A (2003) Fuel cell systems explained. Wiley, Hoboken, NJ

    Google Scholar 

  11. Hoogers G (2003) Fuel cell technology handbook. CRC Press, Boca Raton, FL

    Google Scholar 

  12. Bockris JOM, Reddy AKN, Gamboa-Aldeco M (1998) Modern electrochemistry 2A: fundamentals of electrodics, 2nd edn. Kluwer /Plenum, New York

    Google Scholar 

  13. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  14. Sawyer DT, Andrzej S, Julian LR Jr (1995) Electrochemistry for chemists, 2nd edn. Wiley, New York

    Google Scholar 

  15. Wright SE (2004) Comparison of the theoretical performance potential of fuel cells and heat engines. Renewable Energy 29:179–195

    Article  Google Scholar 

  16. Haynes C (2001) Clarifying reversible efficiency misconceptions of high temperature fuel cells in relation to reversible heat engines. J Power Sources 92:199–203

    Article  Google Scholar 

  17. Lutz AE, Larson RS, Keller JO (2002) Thermodynamic comparison of fuel cells to the Carnot cycle. Int J Hyd Energy 27:1103–1111

    Article  Google Scholar 

  18. Choi P, Jalani NH, Datta R (2005) Thermodynamics and proton transport in Nafion – II. Proton diffusion mechanisms and conductivity. J Electrochem Soc 152:E123–E130

    Article  Google Scholar 

  19. Nguyen PT, Berning T, Djilali N (2004) Computational model of a PEM fuel cell with serpentine gas flow channels. J Power Sources 130:149–157

    Article  Google Scholar 

  20. Heinzel A, Barragán VM (1999) Review of the state-of-the-art of the methanol crossover in direct methanol fuel cells. J Power Sources 84:70–74

    Article  Google Scholar 

  21. Jiang R, Chu D (2004) Comparative studies of methanol crossover and cell performance for a DMFC. J Electrochem Soc 151:A69–A76

    Article  Google Scholar 

  22. Neburchilov V, Martin J, Wang H, Zhang J (2007) A review of polymer electrolyte membranes for direct methanol fuel cells. J Power Sources 169:221–238

    Article  Google Scholar 

  23. Cheng X, Zhang J, Tang Y, Song C, Shen J, Song D (2007) Hydrogen crossover in high-temperature PEM fuel cells. J Power Sources 167:25–31

    Article  Google Scholar 

  24. Rhee YW, Ha SY, Masel RI (2003) Crossover of formic acid through Nafion® membranes. J Power Sources 117:35–38

    Article  Google Scholar 

  25. Wasmus S, Küver A (1999) Methanol oxidation and direct methanol fuel cells: a selective review. J Electroanal Chem 461:14–31

    Article  Google Scholar 

  26. Antolini E, Lopes T, Gonzalez ER (2008) An overview of platinum-based catalysts as methanol-resistant oxygen reduction materials for direct methanol fuel cells. J Alloys Comp 461:253–262

    Article  Google Scholar 

  27. Yu X, Pickup PG (2008) Recent advances in direct formic acid fuel cells (DFAFC). J Power Sources 182:124–132

    Article  Google Scholar 

  28. Larsen R, Ha S, Zakzeski J, Masel RI (2006) Unusually active palladium-based catalysts for the electrooxidation of formic acid. J Power Sources 157:78–84

    Article  Google Scholar 

  29. Liu Z, Hong L, Tham MP, Lim TH, Jiang H (2006) Nanostructured Pt/C and Pd/C catalysts for direct formic acid fuel cells. J Power Sources 161:831–835

    Article  Google Scholar 

  30. Perry ML, Fuller TF (2002) A historical perspective of fuel cell technology in the 20th century. J Electrochem Soc 149(7):S59–S67

    Article  Google Scholar 

  31. Gülzow E (1996) Alkaline fuel cells: a critical view. J Power Sources 61:99–104

    Article  Google Scholar 

  32. McLean GF, Niet T, Prince-Richard S, Djilali N (2002) An assessment of alkaline fuel cell technology. Int J Hyd Energy 27:507–526

    Article  Google Scholar 

  33. Bullen RA, Arnot TC, Lakeman JB, Walsh FC (2006) Biofuel cells and their development. Biosensors Bioelectronics 21:2015–2045

    Article  Google Scholar 

  34. Shukla AK, Suresh P, Berchmans S, Rajendran A (2004) Biological fuel cells and their applications. Curr Sci 87:455–468

    Google Scholar 

  35. Barton SC, Gallaway J, Atanassov P (2004) Enzymatic biofuel cells for implantable and microscale devices. Chem Rev 104:4867–4886

    Article  Google Scholar 

  36. Heller A (2004) Miniature biofuel cells. Phys Chem Chem Phys 6:209–216

    Article  Google Scholar 

  37. Ralph TR, Hogarth MP (2002) Catalysis for low temperature fuel cells – Part I: the cathode challenges. Platinum Metals Rev 46:3–14

    Google Scholar 

  38. US Department of Energy (2002) National Hydrogen Energy Roadmap. US Office of Energy Efficiency and Renewable Energy, Washington, DC

    Google Scholar 

  39. Hubert M (2005) The grand challenge: hydrogen storage. Fuel Cell 5:20–22

    Google Scholar 

  40. Züttel A (2004) Hydrogen storage methods. Naturwissenschaften 91:157–172

    Article  Google Scholar 

  41. Shiraishi M, Takenobu T, Kataura H, Ata M (2004) Hydrogen adsorption and desorption in carbon nanotube systems and its mechanisms. Appl Phys A 78:947–954

    Article  Google Scholar 

  42. Thomas KM (2007) Hydrogen adsorption and storage on porous materials. Catal Today 120:389–398

    Article  Google Scholar 

  43. Yamanaka S, Fujikane M, Uno M, Murakami H, Miura O (2004) Hydrogen content and desorption of carbon nano-structures. J Alloys Comp 366:264–268

    Article  Google Scholar 

  44. Panella B, Hirscher M (2005) Hydrogen physisorption in metal-organic porous crystals. Adv Mater 17:538–541

    Article  Google Scholar 

  45. Van Den Berg AWC AWC, Areán CO CO (2008) Materials for hydrogen storage: current research trends and perspectives. Chemical Communications 6:668–681

    Article  Google Scholar 

  46. Sakintuna B, Lamari-Darkrim F, Hirscher M (2007) Metal hydride materials for solid hydrogen storage: a review. Int J Hyd Energy 32:1121–1140

    Article  Google Scholar 

  47. Schüth F, Bogdanović B, Felderhoff M (2004) Light metal hydrides and complex hydrides for hydrogen storage. Chem Commun 10:2249–2258

    Article  Google Scholar 

  48. Bérubé V, Radtke G, Dresselhaus M, Chen G (2007) Size effects on the hydrogen storage properties of nanostructured metal hydrides: a review. Int J Energy Res 31:637–663

    Article  Google Scholar 

  49. Stephens FH, Pons V, Baker RT (2007) Ammonia-borane: the hydrogen source par excellence? Dalton Trans 25:2613–2626

    Article  Google Scholar 

  50. Marder TB (2007) Will we soon be fueling our automobiles with ammonia-borane? Angew Chem Int Ed 46:8116–8118

    Article  Google Scholar 

  51. Hausdorf S, Baitalow F, Wolf G, Mertens FORL (2008) A procedure for the regeneration of ammonia borane from BNH-waste products. Int J Hyd Energy 33:608–614

    Article  Google Scholar 

  52. Wang B (2005) Recent development of non-platinum catalysts for oxygen reduction reaction. J Power Sources 152:1–15

    Article  Google Scholar 

  53. Lefévre M, Dodelet JP (2003) Fe-based catalysts for the reduction of oxygen in polymer electrolyte membrane fuel cell conditions: determination of the amount of peroxide released during electroreduction and its influence on the stability of the catalysts. Electrochim Acta 48:2749–2760

    Article  Google Scholar 

  54. Feng Y, Alonso-Vante N (2008) Nonprecious metal catalysts for the molecular oxygen-reduction reaction. Phys Status Solidi B 245:1792–1806

    Article  Google Scholar 

  55. Bezerra CWB, Zhang L, Lee K, Liu H, Marques ALB, Marques EP, Wang H, Zhang J (2008) A review of Fe-N/C and Co-N/C catalysts for the oxygen reduction reaction. Electrochim Acta 53:4937–4951

    Article  Google Scholar 

  56. Ikeda T, Boero M, Huang SF, Terakura K, Oshima M, Ozaki JI (2008) Carbon alloy catalysts: active sites for oxygen reduction reaction. J Phys Chem C 112:14706–14709

    Article  Google Scholar 

  57. Gong K, Du F, Xia Z, Durstock M, Dai L (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323:760–764

    Article  Google Scholar 

  58. Camara GA, Ticianelli EA, Mukerjee S, Lee SJ, McBreen J (2002) The CO poisoning mechanism of the hydrogen oxidation reaction in proton exchange membrane fuel cells. J Electrochem Soc 149:A748

    Article  Google Scholar 

  59. Wee JH, Lee KY (2006) Overview of the development of CO-tolerant anode electrocatalysts for proton-exchange membrane fuel cells. J Power Sources 157:128–135

    Article  Google Scholar 

  60. Neurock M, Janik M, Wieckowski A (2008) A first principles comparison of the mechanism and site requirements for the electrocatalytic oxidation of methanol and formic acid over Pt. Faraday Discuss 140:363–378

    Article  Google Scholar 

  61. Larminie J, Andrew D (2003) Fuel cell systems explained, 2nd edn. Wiley, Chichester

    Google Scholar 

  62. Parsons R, VanderNoot T (1988) The oxidation of small organic molecules. A survey of recent fuel cell related research. J Electroanal Chem 257:9–45

    Article  Google Scholar 

  63. Hogarth MP, Ralph TR (2002) Catalysis for low temperature fuel cells – Part III: challenges for the direct methanol fuel cell. Platinum Metals Rev 46:146–164

    Google Scholar 

  64. Liu H, Song C, Zhang L, Zhang J, Wang H, Wilkinson DP (2006) A review of anode catalysis in the direct methanol fuel cell. J Power Sources 155:95–110

    Article  Google Scholar 

  65. Piela P, Eickes C, Brosha E, Garzon F, Zelenay P (2004) Ruthenium crossover in direct methanol fuel cell with Pt-Ru black anode. J Electrochem Soc 151:A2053–A2059

    Article  Google Scholar 

  66. Bai Y, Wu J, Xi J, Wang J, Zhu W, Chen L, Qiu X (2005) Electrochemical oxidation of ethanol on Pt–ZrO2/C catalyst. Electrochem Commun 7:1087–1090

    Article  Google Scholar 

  67. Song H, Qiu X, Li F (2008) Effect of heat treatment on the performance of TiO2-Pt/CNT catalysts for methanol electrooxidation. Electrochim Acta 53:3708–3713

    Article  Google Scholar 

  68. Hogarth WHJ, Diniz da Costa JC, Lu GQ (2005) Solid acid membranes for high temperature (>140°C) proton exchange membrane fuel cells. J Power Sources 142:223–237

    Article  Google Scholar 

  69. Kerres J, Hein M, Zhang W, Graf S, Nicoloso N (2003) Development of new blend membranes for polymer electrolyte fuel cell applications. J New Mater Electrochem Sys 6:223–229

    Google Scholar 

  70. Alberti G, Casciola M (2003) Composite membranes for medium-temperature PEM fuel cells. Annu Rev Mater Res 33:129–154

    Article  Google Scholar 

  71. Kerres JA (2001) Development of ionomer membranes for fuel cells. J Membr Sci 185:3–27

    Article  Google Scholar 

  72. Knauth P, Tuller HL (2002) Solid-state ionics: roots, status, and future prospects. J Am Ceram Soc 85:1654–1680

    Article  Google Scholar 

  73. Wang H, Holmberg BA, Huang L, Wang Z, Mitra A, Norbeck JM, Yan Y (2002) Nafion-bifunctional silica composite proton conductive membranes. J Mater Chem 12:834–837

    Article  Google Scholar 

  74. Alberti G, Casciola M (2001) Solid state protonic conductors, present main applications and future prospects. Solid State Ionics 145:3–16

    Article  Google Scholar 

  75. Arico AS, Bruce P, Scrosati B, Tarascon J-M, van Schalkwijk W (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377

    Article  Google Scholar 

  76. Zawodzinski TA Jr, Springer TE, Davey J, Jestel R, Lopez C, Valerio J, Gottesfeld S (1993) A comparative study of water uptake by and transport through ionomeric fuel cell membranes. J Electrochem Soc 140:1981–1985

    Article  Google Scholar 

  77. Zawodzinski TA Jr, Derouin C, Radzinski S, Sherman RJ, Smith VT, Springer TE, Gottesfeld S (1993) Water uptake by and transport through Nafion 117 membranes. J Electrochem Soc 140:1041–1047

    Article  Google Scholar 

  78. Bocchetta P, Chiavarotti G, Masi R, Sunseri C, Di Quarto F (2004) Nanoporous alumina membranes filled with solid acid for thin film fuel cells at intermediate temperatures. Electrochem Commun 6:923–928

    Article  Google Scholar 

  79. Park Y-I, Nagai M, Kim J-D, Kobayashi K (2004) Inorganic proton-conducting gel glass/porous alumina nanocomposite. J Power Sources 137:175–182

    Article  Google Scholar 

  80. Vichi FM, Colomer MT, Anderson MA (1999) Nanopore ceramic membranes as novel electrolytes for proton exchange membranes. Electrochem Solid-State Lett 2:313–316

    Article  Google Scholar 

  81. Gold S, Chu K-L, Lu C, Shannon MA, Masel RI (2004) Acid loaded porous silicon as a proton exchange membrane for micro-fuel cells. J Power Sources 135:198–203

    Article  Google Scholar 

  82. Ioroi T, Kuraoka K, Yasuda K, Yazawa T, Miyazaki Y (2004) Surface-modified nanopore glass membrane as electrolyte for DMFCs. Electrochem Solid-State Lett 7:A394–A396

    Article  Google Scholar 

  83. Colomer MT, Anderson MA (2001) High porosity silica xerogels prepared by a particulate sol-gel route: pore structure and proton conductivity. J Non-Cryst Solids 290:93–104

    Article  Google Scholar 

  84. Bar-On I, Kirchain R, Roth R (2002) Technical cost analysis for PEM fuel cells. J Power Sources 109:71–75

    Article  Google Scholar 

  85. Hermann A, Chaudhuri T, Spagnol P (2005) Bipolar plates for PEM fuel cells: a review. Int J Hyd Energy 30:1297–1302

    Article  Google Scholar 

  86. Cunningham B, Baird DG (2006) The development of economical bipolar plates for fuel cells. J Mater Chem 16:4385–4388

    Article  Google Scholar 

  87. Tawfik H, Hung Y, Mahajan D (2007) Metal bipolar plates for PEM fuel cell – a review. J Power Sources 163:755–767

    Article  Google Scholar 

  88. Cunningham BD, Huang J, Baird DG (2007) Review of materials and processing methods used in the production of bipolar plates for fuel cells. Int Mater Rev 52:1–13

    Article  Google Scholar 

  89. Cho EA, Jeon US, Ha HY, Hong SA, Oh IH (2004) Characteristics of composite bipolar plates for polymer electrolyte membrane fuel cells. J Power Sources 125:178–182

    Article  Google Scholar 

  90. Heinzel A, Mahlendorf F, Niemzig O, Kreuz C (2004) Injection moulded low cost bipolar plates for PEM fuel cells. J Power Sources 131:35–40

    Article  Google Scholar 

  91. Scholta J, Rohland B, Trapp V, Focken U (1999) Investigations on novel low-cost graphite composite bipolar plates. J Power Sources 84:231–234

    Article  Google Scholar 

  92. Kuan HC, Ma CCM, Chen KH, Chen SM (2004) Preparation, electrical, mechanical and thermal properties of composite bipolar plate for a fuel cell. J Power Sources 134:7–17

    Article  Google Scholar 

  93. Ayres RU (1995) Life cycle analysis: a critique, resources. Conserv Recycl 14:199–223

    Article  Google Scholar 

  94. Finkbeiner M, Inaba A, Tan RBH, Christiansen K, Klüppel HJ (2006) The new international standards for life cycle assessment: ISO 14040 and ISO 14044. Int J Life Cycle Assess 11:80–85

    Article  Google Scholar 

  95. Reap J, Roman F, Duncan S, Bras B (2008) A survey of unresolved problems in life cycle assessment. Part 1: goal and scope and inventory analysis. Int J Life Cycle Assess 13:290–300

    Article  Google Scholar 

  96. Reap J, Roman F, Duncan S, Bras B (2008) A survey of unresolved problems in life cycle assessment. Part 2: impact assessment and interpretation. Int J Life Cycle Assess 13:374–388

    Article  Google Scholar 

  97. Pehnt M (2003) Assessing future energy and transport systems: the case of fuel cells, Part I: methodological aspects. Int J Life Cycle Assess 8:283–289

    Article  Google Scholar 

  98. Pehnt M (2001) Life-cycle assessment of fuel cell stacks. Int J Hydr Energy 26:91–101

    Article  Google Scholar 

  99. Jeong KS, Oh BS (2002) Fuel economy and life-cycle cost analysis of a fuel cell hybrid vehicle. J Power Sources 105:58–65

    Article  Google Scholar 

  100. Ogden JM, Williams RH, Larson ED (2004) Societal lifecycle costs of cars with alternative fuels/engines. Energy Policy 32:7–27

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott A. Gold .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this entry

Cite this entry

Gold, S.A. (2012). Low-Temperature Fuel Cell Technology for Green Energy. In: Chen, WY., Seiner, J., Suzuki, T., Lackner, M. (eds) Handbook of Climate Change Mitigation. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7991-9_43

Download citation

Publish with us

Policies and ethics