Skip to main content

Microbial Applications in Agriculture and the Environment: A Broad Perspective

  • Chapter
  • First Online:
Book cover Microbes and Microbial Technology

Abstract

Microbial diversity is an important component of the overall global biological diversity. Recent technological advances in exploring microbial diversity have revealed that a large proportion of microorganisms are still undiscovered, and their ecological roles are largely unknown. Careful selection of microbes and intelligent design of test assays are the key steps in developing new technologies for effective utilization of microorganisms for sustainable agriculture, environmental protection, and human and animal health. Several microbial applications are widely known in solving major agricultural (i.e., crop productivity, plant health protection, and soil health maintenance) and environmental issues (i.e., bioremediation of soil and water from organic and inorganic pollutants). Wastewater treatment and recycling of agricultural and industrial wastes are other important uses of microbial technology. It is expected that microbes in combination with developments in electronics, software, digital imaging, and nanotechnology will play a significant role in solving global problems of the twenty-first century, including climate change. These advances are expected to enhance sustainability of agriculture and the environment. This chapter provides an overview of recent trends in microbial exploitation in plant growth promotion and sustainable environment mainly through bioremediation, biodegradation, and biosorption processes. Recent uses and application of microbes such as biosensors, synthesis of nanomaterials, and probiotics are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aeltermann, P., Rabaey, K., Clauwaert, P., and Verstraete, W. 2006. Microbial fuel cells for wastewater treatment. Water Sci Technol 54:9–15.

    Google Scholar 

  • Ahmad, F. 2006. Diversity and potential bioprospection of certain plant growth promoting rhizobacteria. PhD thesis submitted to Aligarh Muslim University, Aligarh.

    Google Scholar 

  • Ahmad, A., Mukherjee, P., Senapati, S., Mandal, D., Khan, M.I., Kumar, R., and Sastry, M. 2003. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B 28:313–318.

    CAS  Google Scholar 

  • Ahmad, F., Ahmad, I., and Khan, M.S. 2008a. Screening of free living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 263:173–181.

    Google Scholar 

  • Ahmad, F., Ahmad, I., Aqil, F., Khan, M.S., and Hayat, S. 2008b. Diversity and potential of non-symbiotic diazotrophic bacteria in promoting plant growth. In: Plant–bacteria ­interactions: strategies and techniques to promote plant growth, Ahmad, I., Pitchel, J., and Hayat, S. (eds.), pp. 81–109. Wiley-VCH Verlag GmbH &Co. KGa: Weinheim, Germany (ISBN: 978-3-527-31901-5).

    Google Scholar 

  • Akyilmaz, E. and Dinckaya, E. 2005. An amperometric microbial biosensor development based on Candida tropicalis yeast cells for sensitive determination of ethanol. Biosens Bioelectron 20:1263–1269.

    CAS  Google Scholar 

  • Bailey, J.E. 1991. Toward a science of metabolic engineering. Science 252:1668–1675.

    CAS  Google Scholar 

  • Bais, H.P., Park, S.W., Weir, T.L., Callaway, R.M., and Vivanco, J.M. 2004. How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32.

    CAS  Google Scholar 

  • Bashan, Y. and de-Bashan, L.E. 2005. Bacteria. In: Encyclopaedia of soils in the environment, Hillel, D. (ed.), pp. 103–115. Elsevier: Oxford, UK.

    Google Scholar 

  • Belkin, S. 2003. Microbial whole-cell sensing systems of environmental pollutants. Curr Opin Microbiol 6:206–212.

    CAS  Google Scholar 

  • Bloemberg, G.V. and Lugtenberg, B.J.J. 2001. Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350.

    CAS  Google Scholar 

  • Boddey, R.M., Urquiaga, S., Alves, B.J.R., and Reis, V. 2003. Endophytic nitrogen fixation in sugarcane: present knowledge and future applications. Plant Soil 252:139–149.

    CAS  Google Scholar 

  • Boeckx, P., van Cleemput, O., and Villaralvo, I. 1997. Methane oxidation in soils with different textures and land use. Nutr Cycl Agroecosyst 49:91–95.

    CAS  Google Scholar 

  • Boetius, A., Ravenschlag, K., Schubert, C.J., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Borneman, J., and Triplett, E.W. 1997. Molecular microbial diversity in soil from Eastern Amazonia: evidence for unusual microorganisms and microbial population shifts associated with deforestation. Appl Environ Microbiol 63:2647–2653.

    Google Scholar 

  • Borneman, J. and Triplett, E.W. 1997. Molecular microbial diversity in soil from Eastern Amazonia: evidence for unusual microorganisms and microbial population shifts associated with deforestation. Appl Environ Microbiol 63:2647–2653.

    CAS  Google Scholar 

  • Burchiel, S.W. and Luster, M.I. 2001. Signaling by environmental polycyclic aromatic hydrocarbons in human lymphocytes. Clin Immunol 98:2–10.

    CAS  Google Scholar 

  • Burd, G.I., Dixon, D.G., and Glick, B.R. 1998. A plant growth promoting bacterium that decreases nickel toxicity in seedlings. Appl Environ Microbiol 64:3663–3668.

    CAS  Google Scholar 

  • Burd, G.I., Dixon, D.G., and Glick, B.R. 2000. Plant growth promoting bacteria that decreases heavy metal toxicity in plants. Can J Microbiol 46:237–245.

    CAS  Google Scholar 

  • Carvalho, M.F., Ferreira, J.R., Pacheco, C.C., De Marco, P., Castro, P.M.L. 2005. Isolation and properties of a pure bacterial strain capable of fluorobenzene degradation as sole carbon and energy source. Environ Microbiol 7:294–298.

    CAS  Google Scholar 

  • Chan, C., Lehmann, M., Chan, K., Chan, P., Chan, C., Gruendig, B., Kunze, G., and Renneberg, R. 2000. Designing an amperometric thick-film microbial BOD sensor. Biosens Bioelectron 15:343–353.

    CAS  Google Scholar 

  • Chanway, C.P., Shishido, M., Nairn, J., Jungwirth, S., Markham, J., Xiao, G., and Holl, F.B. 2000. Endophytic colonization and field responses of hybrid spruce seedlings after inoculation with plant growth-promoting rhizobacteria. For Ecol Manage 133:81–88.

    Google Scholar 

  • Chee, G.J., Nomura, Y., and Karube, I. 1999. Biosensor for the estimation of low biochemical oxygen demand. Anal Chim Acta 379:185–191.

    CAS  Google Scholar 

  • Chin-A-Woeng, T.F., Thomas-Oates, J.E., Lugtenberg, B.J.J., and Bloemberg, G.V. 2001. Introduction of the phzH gene of Pseudomonas chlororaphis PCL1391 extends the range of biocontrol ability of phenazine-1-carboxylic acid-producing Pseudomonas spp. strains. Mol Plant Microbe Interact 14:1006–1015.

    CAS  Google Scholar 

  • Conn, K.L., Nowak, J., and Lazarovits, G. 1997. A gnotobiotic bioassay for studying interactions between potato and plant growth-promoting rhizobacteria. Can J Microbiol 43:801–808.

    CAS  Google Scholar 

  • Cook, J.H., Beyea, J., and Keeler, K.H. 1991. Potential impacts of biomass production in the United States on biological diversity. Annu Rev Energ Environ 16:401–431.

    Google Scholar 

  • Crowley, T.J. 2000. Causes of climate change over the past 1000 years. Science 289:270–277.

    CAS  Google Scholar 

  • Crueger, W. and Crueger, A. 2003. Biotechnology: a textbook of industrial microbiology. Panima Publishing Corporation: New Delhi.

    Google Scholar 

  • D’Souza, S.F. 2001. Microbial biosensors. Biosens Bioelectron 16:337–353.

    Google Scholar 

  • Daniel, M.C. and Astruc, D. 2004. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346.

    CAS  Google Scholar 

  • de Boer, M., van der Sluis, I., van Loon, L.C., and Bakker, P.A.H.M. 1999.Combining fluorescent Pseudomonas spp. strains to enhance suppression of fusarium wilt of radish. Eur J Plant Pathol 105:201–210.

    Google Scholar 

  • de Weger, L.A., van der Bij, A.J., Dekkers, L.C., Simons, M., Wijffelman, C.A., and Lugtenberg, B.J.J. 1995. Colonization of the rhizosphere of crop plants by plant-beneficial pseudomonads. FEMS Microbiol Ecol 17:221–228.

    Google Scholar 

  • de Wildeman, S. and Verstraete, W. 2003. The quest for microbial reductive dechlorination of C2 to C4 chloroalkanes is warranted. Appl Microbiol Biotechnol 61:94–102.

    Google Scholar 

  • Dickson, D.P.E. 1999. Nanostructured magnetism in living systems. J Magn Magn Mater 203:46–49.

    CAS  Google Scholar 

  • Duffy, B.K., Simon, A., and Weller, D.M. 1996. Combination of Trichoderma koningii with fluorescent pseudomonads for control of take-all on wheat. Phytopathology 86:188–194.

    Google Scholar 

  • Feijtel, T.C., Segers, L., and Verstraete, W. 1985. Hydrogen accumulation by H2-uptake negative strains of Rhizobium. Plant Soil 85:77–84.

    CAS  Google Scholar 

  • Fernandez, M., Duque, E., Pizarro-Tobias, P., van Dillewijn, P., Wittich, R.M., and Ramos, J.L. 2009. Microbial responses to xenobiotic compounds. Identification of genes that allow Pseudomonas putida KT2440 to cope with 2,4,6-trinitrotoluene. Microb Biotechnol 2:287–294.

    CAS  Google Scholar 

  • Fismes, J., Perrin-Ganier, C., Empereur-Bissonnet, P., and Morel, J.L. 2002. Soil-to-root transfer and translocation of polycyclic aromatic hydrocarbons by vegetables grown on industrial contaminated soils. J Environ Qual 31:1649–1656.

    CAS  Google Scholar 

  • Gaberlein, S., Spener, F., and Zaborosch, C. 2000. Microbial and cytoplasmic membrane-based potentiometric biosensors for direct determination of organophosphorus insecticides. Appl Microbiol Biotechnol 54:652–658.

    CAS  Google Scholar 

  • Garbeva, P., Voesenek, K., and van Elsas, J.D. 2004. Quantitative detection and diversity of the pyrrolnitrin biosynthetic locus in soil under different treatments. Soil Biol Biochem 36:1453–1463.

    CAS  Google Scholar 

  • Garland, J.L. 1996. Patterns of potential C source utilization by rhizosphere communities. Soil Biol Biochem 28:223–230.

    CAS  Google Scholar 

  • Gatesoupe, F.J. 2008. Updating the importance of lactic acid bacteria in fish farming: natural occurrence and probiotic treatments. J Mol Microbiol Biotechnol 14:107–114.

    CAS  Google Scholar 

  • Gaur, A.C. 1990. Physiological functions of phosphate solubilizing micro-organisms. In: Phosphate solubilizing micro-organisms as biofertilizers, Gaur, A.C. (ed.), pp. 16–72. Omega Scientific Publishers: New Delhi, India.

    Google Scholar 

  • Gerhardson, B. 2002. Biological substitutes for pesticides. Trends Biotechnol 20:338–343.

    CAS  Google Scholar 

  • Gieg, L.M., Alumbaugh, R.E., Field, J., Jones, J., Istok, J.D., and Suflita, J.M. 2009. Assessing in situ rates of anaerobic hydrocarbon bioremediation. Microb Biotechnol 2:222–233.

    CAS  Google Scholar 

  • Gilbert, J.A., Hill, P.J., Dodd, C.E.R., and Laybourn-Parry, J. 2004. Demonstration of antifreeze protein activity in Antarctic lake bacteria. Microbiology 150:171–180.

    CAS  Google Scholar 

  • Gill, S.R., Pop, M., DeBoy, R.T., Eckburg, P.B., Turnbaugh, P.J., Samuel, B.S., Gordon, J.I., Relman, D.A., Fraser-Liggett, C.M., and Nelson, K.E. 2006. Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359.

    CAS  Google Scholar 

  • Glick, B. 1995. The enhancement of plant growth by free-living bacteria. Can J Microbiol 41:109–117.

    CAS  Google Scholar 

  • Glick, B.R. 2003. Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393.

    CAS  Google Scholar 

  • Glick, B.R., Penrose, D.M., and Li, J. 1998. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68.

    CAS  Google Scholar 

  • Glick, B.R., Patten, C.L., Holguin, G., and Penrose, D.M. 1999. Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press: London.

    Google Scholar 

  • Gordon, J.I., Ley, R.E., Wilson, R., Mardis, E.J.X., Fraser, C.M., and Relman, D.A. (2006) Extending our view of self: the Human Gut Microbiome Initiative (HGMI) [WWWdocument]. URL http://www.genome.gov/Pages/Research/Sequencing/SeqProposals/HGMISeq.pdf.

  • Gray, E.J. and Smith, D.L. 2005. Intracellular and extracellular PGPR: commonalities and distinctions in the plant-bacterium signaling processes. Soil Biol Biochem 37:395–412.

    CAS  Google Scholar 

  • Haas, D., Blumer, C., and Keel, C. 2000. Biocontrol ability of fluorescent pseudomonads genetically dissected: importance of positive feedback regulation. Curr Opin Biotechnol 11:290–297.

    CAS  Google Scholar 

  • Haas, D., Keel, C., and Reimmann, C. 2002. Signal transduction in plant beneficial rhizobacteria with biocontrol properties. Antonie Van Leeuwenhoek 81:385–395.

    CAS  Google Scholar 

  • Hallman, J., Quadt-Hallman, A., Mahafee, W.F., and Kloepper, J.W. 1997. Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914.

    Google Scholar 

  • Heur, H., Krsek, M., Baker, P., Smalla, K., and Wellington, E.M.H. 1997. Analysis of actinomycetes communities by specific amplificationof gene encoding 16S rDNA and gel-electrophoretic separation in denaturing gradient. Can J Microbiol 63:3233–3241.

    Google Scholar 

  • Higuchi, W., Muramatsu, M., Dohmae, S., Takano, T., Isobe, H., Yabe, S., Da, S., Baranovich, T., and Yamamoto, T. 2008. Identification of probiotic lactobacilli used for animal feeds on the basis of 16S ribosomal RNA gene sequence. Microbiol Immunol 52:559–563.

    CAS  Google Scholar 

  • Hinrichs, K.U., Hayes, J.M., Sylva, S.P., Brewer, P.G., and de Long, E.F. 1999. Methane-consuming archaebacteria in sediments. Nature 398:802–805.

    CAS  Google Scholar 

  • Hopper, D.R. 1989. Cleaning up contaminated waste sites. Chem Eng 96:94–110.

    CAS  Google Scholar 

  • Huang, Z., Bonsall, R.F., Mavrodi, D.V., Weller, D.M., and Thomashow, L.S. 2004. Transformation of Pseudomonas fluorescens with genes for biosynthesis of phenazine-1-carboxylic acid improves biocontrol of rhizoctonia root rot and in situ antibiotic production. FEMS Microbiol Ecol 49:243–251.

    CAS  Google Scholar 

  • Ikeda, T., Kato, K., Maeda, M., Tatsumi, H., Kano, K., and Matsushita, K. 1997. Electrocatalytic properties of Acetobacter aceti cells immobilized on electrodes for the quinone-mediated oxidation of ethanol. J Electroanal Chem 430:197–204.

    Google Scholar 

  • Imran, M. 2010. Interaction of heavy metals with indigenous isolates of free living rhizospheric fungi and their plant growth promoting potential. PhD thesis submitted to Aligarh Muslim University, Aligarh.

    Google Scholar 

  • Jackson, T. 1999. Renewable energy. Summary paper for the renewables series. Energy Policy 20:861–883.

    Google Scholar 

  • Ji, R. and Brune, A. 2005. Digestion of peptidic residues in humic substances by an alkali-stable and humic-acid-tolerant proteolytic activity in the gut of soil-feeding termites. Soil Biol Biochem 37:1648–1655.

    CAS  Google Scholar 

  • Ju, K.S. and Parales, R.E. 2009. Application of nitroarene dioxygenases in the design of novel strains that degrade chloronitrobenzenes. Microb Biotechnol 2:241–252.

    CAS  Google Scholar 

  • Kalliomaki, M., Salminen, S., and Isolauri, E. 2008. Positive interactions with the microbiota: probiotics. Adv Exp Med Biol 635:57–66.

    Google Scholar 

  • Kanaly, R.A. and Harayama, S. 2010. Advances in the field of high-molecular-weight polycyclic aromatic hydrocarbon biodegradation by bacteria. Microb Biotechol 3:136–164.

    CAS  Google Scholar 

  • Kawamura, K. and Suzuki, I. 1994. Ice core record of polycyclic aromatic hydrocarbons over the past 400 years. Naturwissenschaften 81:502–505.

    CAS  Google Scholar 

  • Keppler, F., Hamilton, J.T.G., Brass, M., and Rockmann, T. 2006. Methane emissions from terrestrial plants under aerobic conditions. Nature 439:187–191.

    CAS  Google Scholar 

  • Khan, M.S, Zaidi, A., and Wani, P.A. 2009. Role of phosphate solubilizing microorganisms in sustainable agriculture – a review. In: Sustainable agriculture, Lichtfouse, E., Navarrete, M., Debaeke, P., Souchere, V., and Alberola, C. (eds.). Springer: Netherlands, pp 551–570.

    Google Scholar 

  • Kilic-Ekici, O. and Yuen, G.Y. 2004. Comparison of strains of Lysobacter enzymogenes and PGPR for induction of resistance against Bipolaris sorokiniana in tall fescue. Biol Control 30:446–455.

    CAS  Google Scholar 

  • Kitagawa, Y., Ameyama, M., Nakashima, K., Tamiya, E., and Karube, I. 1987. Amperometric alcohol sensor based on an immobilised bacteria cell membrane. Analyst 112:1747–1751.

    CAS  Google Scholar 

  • Kleerebezem, M. and Vaughan, E.E. 2009. Probiotic and gut lactobacilli and bifidobacteria: molecular approaches to study diversity and activity. Annu Rev Microbiol 63:269–290.

    CAS  Google Scholar 

  • Kloepper, J.W. and Schroth, M.N. 1978. Plant growth-promoting rhizobacteria on radishes. In: Proceedings of the 4th International Conference on Plant Pathogenic Bacteria, Station de pathologie vegetale et phyto-bacteriologie (ed.), vol. II, pp. 879–882. Gilbert-Clarey, Tours, France.

    Google Scholar 

  • Kloepper, J.W., Rodriguez-Ubana, R., Zehnder, G.W., Murphy, J.F., Sikora, E., and Fernandez, C. 1999. Plant root-bacterial interactions in biological control of soilborne diseases and potential extension to systemic and foliar diseases. Australas Plant Pathol 28:21–26.

    Google Scholar 

  • Kroger, N., Deutzmann, R., and Sumper, M. 1999. Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286:1129–1132.

    CAS  Google Scholar 

  • Krutmann, J. 2009. Pre- and probiotics for human skin. J Dermatol Sci 54:1–5.

    Google Scholar 

  • Kuiper, I., Lagendijk, E.L., Bloemberg, G.V., and Lugtenberg, B.J. 2004. Rhizoremediation: a beneficial plant-microbe interaction. Mol Plant Microbe Interact 17:6–15.

    CAS  Google Scholar 

  • Kumar, A., Mandal, S., Selvakannan, P.R., Parischa, R., Mandale, A.B., and Sastry, M. 2003. Investigation into the interaction between surface-bound alkylamines and gold nanoparticles. Langmuir 19:6277–6282.

    CAS  Google Scholar 

  • Kurokawa, K., Itoh, T., Kuwahara, T., Oshima, K., Toh, H., Toyoda, A., Takami, H., Morita, H., Sharma, V.K., Srivastava, T.P., Taylor, T.D., Noguchi, H., Mori, H., Ogura, Y., Ehrlich, D.S., Itoh, K., Takagi, T., Sakaki, Y., Hayashi, T., and Hattori, M. 2007. Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes. DNA Res 14:169–181.

    CAS  Google Scholar 

  • Kuypers, M.M.M., Sliekers, A.O., Lavik, G., Schmid, M., Jorgensen, B.B., Kuenen, J.G., Damste, J.S.S., Strous, M., and Jetten, M.S.M. 2003. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 422:608–611.

    CAS  Google Scholar 

  • Labana, S., Pandey, G., Paul, D., Sharma, N.K., Basu, A., and Jain, R.K. 2005. Pot and field studies on bioremediation of p-nitrophenol contaminated soil using Arthrobacter protophormiae RKJ100. Environ Sci Technol 39:3330–3337.

    CAS  Google Scholar 

  • Lal, R., Pandey, G., Sharma, P., Kumari, K., Malhotra, S., Pandey, R., Raina, V., Kohler, H.P.E., Holliger, C., Jackson, C., and Oakeshott, J.G. 2010. Biochemistry of microbial degradation of hexachlorocyclohexane and prospects for bioremediation. Microbiol Mol Biol Rev 74:58–80.

    CAS  Google Scholar 

  • Lang, C., Tao, S., Liu, W., Zhang, Y., and Simonich, S. 2008. Atmospheric transport and outflow of polycyclic aromatic hydrocarbons from China. Environ Sci Technol 42:5196–5201.

    CAS  Google Scholar 

  • Lebeer, S., Vanderleyden, J., and De Keersmaecker, S.C. 2008. Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol Biol Rev 72:728–764.

    CAS  Google Scholar 

  • Leeman, M., Denouden, F.M., van Pelt, J.A., Cornelissen, C., MatamalaGarros, A., Bakker, P.A.H.M., and Schippers, B. 1996. Suppression of fusarium wilt of radish by co-inoculation of fluorescent Pseudomonas spp. and root-colonizing fungi. Eur J Plant Pathol 102:21–31.

    Google Scholar 

  • Lei, Y., Chen, W., and Mulchandani, A. 2006. Microbial biosensors. Anal Chim Acta 568:200–210.

    CAS  Google Scholar 

  • Li, Y.R. and Chu, J. 1991. Study of BOD microbial sensors for waste water treatment control. Appl Biochem Biotechnol 28–29:855–863.

    Google Scholar 

  • Liu, W.T., Marsh, T.L., Cheng, H., and Forney, L.J. 1997. Characterization of microbial diversity by terminal restriction length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63:4516–4522.

    CAS  Google Scholar 

  • Lovley, D.R., Stolz, J.F., Nord, G.L., and Philips, E.J.P. 1987. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature 330:252–254.

    CAS  Google Scholar 

  • Lowenstam, H.A. 1981. Minerals formed by organisms. Science 211:1126–1131.

    CAS  Google Scholar 

  • Lugtenberg, B.J.J., Dekkers, L., and Bloemberg, G.V. 2001. Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490.

    CAS  Google Scholar 

  • Lundstedt, S., White, P.A., Lemieux, C.L., Lynes, K.D., Lambert, I.B., Oberg, L., Heglund, P., and Tysklind, M. 2007. Sources, fate, and toxic hazards of oxygenated polycyclic aromatic hydrocarbons (PAHs) at PAH-contaminated sites. Ambio 36:475–485.

    CAS  Google Scholar 

  • Lutz, M.P., Wenger, S., Maurhofer, M., Defago, G., and Duffy, B. 2004. Signaling between bacterial and fungal biocontrol agents in a strain mixture. FEMS Microbiol Ecol 48:447–455.

    CAS  Google Scholar 

  • Mandal, D., Bolander, M.E., Mukhopadhya, D., Sarkar, G., and Mukharjee, P. 2006. The use of microorganism for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69:485–492.

    CAS  Google Scholar 

  • Mann, S. 1993. Molecular tectonics in biomineralization and biomimetic materials chemistry. Nature 365:499–505.

    CAS  Google Scholar 

  • Mann, S. 1996. Biomimetic materials chemistry. VCH: New York, pp. 1–40.

    Google Scholar 

  • Margesin, R., Gander, S., Zacke, G., Gounot, A.M., Schinner, F. 2003. Hydrocarbon degradation and enzyme activities of coldadapted bacteria and yeast. Extremophiles 7:451–458.

    CAS  Google Scholar 

  • Massol-Deya, A.A., Odelson, D.A., Hickey, R.F., and Tiedje, J.M. 1995. Bacterial community fingerprinting of amplified 16S and 16-23S ribosomal RNA gene sequences and restriction endonuclease analysis (ARDRA). In: Molecular microbial ecology manual, Akerman, A.D.L., van Elsas, J.D., de Bruijn, F.J. (eds.). Kluwer Academics: Dordrecht, Netherlands.

    Google Scholar 

  • Matilla, M.A., Espinosa-Urgel, M., Rodriguez-Herva, J.J., Ramos, J.L., and Ramos-Gonzalez, M.I. 2007. Genomic analysis reveals the major driving forces of bacterial life in the rhizosphere. Genome Biol 8(9):R179.

    Google Scholar 

  • McCaig, A.E., Glover, L., and Prosser, J.I. 1999. Molecular analysis of bacterial community structure and diversity in unimproved upland grass pastures. Appl Environ Microbiol 65:1721–1730.

    CAS  Google Scholar 

  • Meador, J.P. 2003. Bioaccumulation of PAHs in marine invertebrates. In: PAHs: an ecotoxicological perspective, Douben, P.E.T. (ed.), pp. 147–171. Wiley: London, UK.

    Google Scholar 

  • Mehra, R.K. and Winge, D.R. 1991. Metal ions resistance in fungi: molecular mechanisms and their regulated expression. J Cell Biochem 45:30–40.

    CAS  Google Scholar 

  • Metchnikoff, E. 1907. Essais optimistes. The prolongation of life optimistic studies. Heinemann: London, UK.

    Google Scholar 

  • Mikkelson, S.R. and Corton, E. 2004. Bioanalytical chemistry. Wiley: Hoboken, NJ.

    Google Scholar 

  • Mohanty, S.R., Bodelier, P.L.E., Floris, V., and Conrad, R. 2006. Differential effects of nitrogenous fertilizers on methane-consuming microbes in rice field and forest soils. Appl Environ Microbiol 72:1346–1354.

    CAS  Google Scholar 

  • Morrissey, J.P., Walsh, U.F., O’Donnell, A., Moenne-Loccoz, Y., and O’Gara, F. 2002. Exploitation of genetically modified inoculants for industrial ecology applications. Antonie Van Leeuwenhoek 81:599–606.

    CAS  Google Scholar 

  • Morrissey, J.P., Dow, J.M., Mark, G.L., and O’Gara, F. 2004. Are microbes at the root of a solution to world food production? EMBO Rep 5:922–926.

    CAS  Google Scholar 

  • Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., Sainkar, S.R., Khan, M.I., Ramani, R., Parischa, R., Ajayakumar, P.V., Alam, M., Sastry, M., and Kumar, R. 2001a. Bioreduction of AuCl 4 ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed 40:3585–3588.

    CAS  Google Scholar 

  • Mukherjee, P., Ahmad, A., Mandal, D., Senapati, S., Sainkar, S.R., Khan, M.I., Parischa, R., Ajayakumar, P.V., Alam, M., Kumar, R., and Sastry, M. 2001b. Fungus mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515–519.

    CAS  Google Scholar 

  • Mukherjee, P., Senapati, S., Mandal, D., Ahmad, A., Khan, M.I., Kumar, R., and Sastry, M. 2002. Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chembiochem 3:461–463.

    CAS  Google Scholar 

  • Mulchandani, A. and Rogers, K.R. 1998. Enzyme and microbial biosensors: techniques and protocols. Humana Press: Totowa, NJ.

    Google Scholar 

  • Mulchandani, A., Mulchandani, P., Kaneva, I., and Chen, W. 1998. Biosensor for direct determination of organophosphate nerve agents using recombinant Escherichia coli with surface-expressed organophosphorus hydrolase. 1. Potentiometric microbial electrode. Anal Chem 70:4140–4145.

    CAS  Google Scholar 

  • Muyzer, G. and Smalla, K. 1998. Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 73:127–141.

    CAS  Google Scholar 

  • Nam, J.J., Sweetman, A.J., and Jones, K.C. 2009. Polynuclear aromatic hydrocarbons (PAHs) in global background soils. J Environ Monit 11:45–48.

    CAS  Google Scholar 

  • Neff, J.M. 2002. Bioaccumulation in marine organisms: effect of contaminants from oil well produced water. Elsevier Press: Amsterdam, The Netherlands.

    Google Scholar 

  • Nowak, J. and Shulaev, V. 2003. Priming for transplant stress resistance in in vitro propagation. In Vitro Cell Dev Biol Plant 39:107–124.

    Google Scholar 

  • Ohki, A., Shinohara, K., Ito, O., Naka, K., Maeda, S., Sato, T., Akano, H., Kato, N., and Kawamura, Y. 1994. A BOD sensor using Klebsiella oxytoca AS1. Int J Environ Anal Chem 56:261–269.

    CAS  Google Scholar 

  • Ohkouchi, N., Kawamura, K., and Kawahata, H. 1999. Distributions of three- to seven-ring polynuclear aromatic hydrocarbons on the deep sea floor in the central pacific. Environ Sci Technol 33:3086–3090.

    CAS  Google Scholar 

  • Okochi, M., Mima, K., Miyata, M., Shinozaki, Y., Haraguchi, S., Fujisawa, M., Kaneko, M., Masukata, T., and Matsunaga, T. 2004. Development of an automated water toxicity biosensor using Thiobacillus ferrooxidans for monitoring cyanides in natural water for a water filtering plant. Biotechnol Bioeng 87:905–911.

    CAS  Google Scholar 

  • Olivain, C., Alabouvette, C., and Steinberg, C. 2004. Production of a mixed inoculum of Fusarium oxysporum Fo47 and Pseudomonas fluorescens C7 to control Fusarium diseases. Biocontrol Sci Technol 14:227–238.

    Google Scholar 

  • Oliver, S., Kupermann, A., Coombs, N., Lough, A., and Ozin, G.A. 1995. Lamellar aluminophosphates with surface patterns that mimic diatom and radiolarian microskeletons. Nature 378:47–50.

    CAS  Google Scholar 

  • Ouwehand, A.C., Salminen, S., and Isolauri, E. 2002. Probiotics: an overview of beneficial effects. Antonie Van Leeuwenhoek 82:279–289.

    CAS  Google Scholar 

  • Ovreas, L. and Torsvik, V. 1998. Microbial diversity and community structure in two different agricultural soil communities. Microb Ecol 36:303–315.

    CAS  Google Scholar 

  • Paul, E.A. 2007. Soil microbiology, ecology, and biochemistry, 3rd ed. Academic Press: San Diego.

    Google Scholar 

  • Pierson, E.A., Wood, D.W., Cannon, J.A., Blachere, F.M., and Pierson, L.S. 1998. Interpopulation signaling via N-acyl-homoserine lactones among bacteria in the wheat rhizosphere. Mol Plant Microbe Interact 11:1078–1084.

    CAS  Google Scholar 

  • Pinton, R., Varanini, Z., and Nannipieri, P. 2001. The rhizosphere as a site of biochemical interactions among soil component, plants and microorganisms. In: The rhizosphere: biochemistry and organic substances at the soil plant interface, Pinton, R., Varanini, Z., and Nannipieri, P. (eds.), pp. 1–18. Marcel Dekker, New York.

    Google Scholar 

  • Porteous, F., Killham, K., and Meharg, A. 2000. Use of a lux-marked rhizobacterium as a biosensor to assess changes in rhizosphere C flow due to pollutant stress. Chemosphere 41:1549–1554.

    CAS  Google Scholar 

  • Postma, J., Montanari, M., and van den Boogert, P.H.J.F. 2003. Microbial enrichment to enhance the disease suppressive activity of compost. Eur J Soil Biol 39:157–163.

    Google Scholar 

  • Pum, D. and Sleytr, U.B. 1999. The application of bacterial S-layers in molecular nanotechnology. Trends Biotechnol 17:8–12.

    CAS  Google Scholar 

  • Rabaey, K. and Verstraete, W. 2005. Microbial fuel cells: novel biotechnology for energy generation. Trends Biotechnol 23:291–298.

    CAS  Google Scholar 

  • Rajkumar, M., Lee, K.J., Lee, W.H., and Banu, J.R. 2005. Growth of Brassica juncea under chromium stress: influence of siderophores and indole-3-acetic acid producing rhizosphere bacteria. J Environ Biol 26:693–699.

    CAS  Google Scholar 

  • Ramsay, G. 1998. Commercial biosensors: applications to clinical, bioprocess and environmental samples. Wiley: Chichester, UK.

    Google Scholar 

  • Ranjard, L. and Richaume, A.S. 2001. Quantitative and qualitative microscale distribution of bacteria in soil. Res Microbiol 152:707–716.

    CAS  Google Scholar 

  • Rasmussen, L.D., Turner, R.R., and Barkay, T. 1997. Cell-density-dependent sensitivity of a mer-lux bioassay. Appl Environ Microbiol 63:3291–3293.

    CAS  Google Scholar 

  • Raupach, G.S. and Kloepper, J.W. 1998. Mixtures of plant growth promoting rhizobacteria enhance biological control of multiple cucumber pathogens. Phytopathology 88:1158–1164.

    CAS  Google Scholar 

  • Reid, G. 2008. Probiotic lactobacilli for urogenital health in women. J Clin Gastroenterol 42 (Suppl. 3 Part 2): S234–S236.

    Google Scholar 

  • Rensing, C. and Maier, R.M. 2003. Issues underlying use of biosensors to measure metal bioavailability. Ecotoxicol Environ Saf 56:140–147.

    CAS  Google Scholar 

  • Riedel, K., Renneberg, R., Kuhn, M., and Scheller, F. 1988. A fast estimation of biochemical oxygen demand using microbial sensors. Appl Microbiol Biotechnol 28:316–318.

    CAS  Google Scholar 

  • Rojo, F., Pieper, D.H., Engesser, K.-H., Knackmuss, H.J., and Timmis, K.N. 1987. Assemblage of ortho cleavage route for simultaneous degradation of chloro- and methylaromatics. Science 238:1395–1398.

    CAS  Google Scholar 

  • Rovira, A.D. 1965. Interactions between plant roots and soil microorganisms. Annu Rev Microbiol 19:241–266.

    CAS  Google Scholar 

  • Samanta, S., Singh, O.V., and Jain, R.K. 2002. Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends Biotechnol 20:243–248.

    CAS  Google Scholar 

  • Sastry, M., Ahmad, A., Khan, M.I., and Kumar, R. 2004. Microbial nanoparticle production. In: Nanobiotechnology, Niemeyer, C.M. and Mirkin, C.A. (eds.), pp 126–135. Wiley-VCH, Weinheim, Germany.

    Google Scholar 

  • Scheibe, T.D., Mahadevan, R., Fang, Y., Garg, S., Long, P.E., and Lovley, D.R. 2009. Coupling a genome-scale metabolic model with a reactive transport model to describe in situ uranium bioremediation. Microb Biotechnol 2:274–286.

    CAS  Google Scholar 

  • Schisler, D.A., Slininger, P.J., and Bothast, R.J. 1997. Effects of antagonist cell concentration and two-strain mixtures on biological control of Fusarium dry rot of potatoes. Phytopathology 87:177–183.

    CAS  Google Scholar 

  • Schmalenberger, A. and Tebbe, C.C. 2002. Bacterial community composition in the rhizosphere transgenic, herbicide resistant maize (Zea mays) and comparison to its non-transgenic cultivar Bosphore. FEMS Microbiol Ecol 40:29–37.

    CAS  Google Scholar 

  • Selifonova, O., Burlage, R., and Barkay, T. 1993. Bioluminescent sensors for detection of bioavailable Hg(II) in the environment. Appl Environ Microbiol 59:3083–3090.

    CAS  Google Scholar 

  • Sessitsch, A., Coenye, T., Sturz, A.V., Vandamme, P., Ait Barka, E., Salles, J.F., van Elsas, J.D., Faure, D., Reiter, B., Glick, B.R., Wang-Pruski, G., and Nowak, J. 2005. Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant beneficial properties. Int J Syst Evol Microbiol 55:1187–1192.

    CAS  Google Scholar 

  • Siddiqui, K.S. and Cavicchioli, R. 2006. Cold-adapted enzymes. Annu Rev Biochem 75:403–433.

    CAS  Google Scholar 

  • Siezen, R.J. and Wilson, G. 2010. Probiotics genomics. Microb Biotechnol 3:1–9.

    CAS  Google Scholar 

  • Simkiss, K. and Wilbur, K.M. 1989. Biomineralization. Academic Press: New York.

    Google Scholar 

  • Singh, O.V. 2006. Proteomics and metabolomics: the molecular make-up of toxic aromatic pollutant bioremediation. Proteomics 6: 5481–5492.

    CAS  Google Scholar 

  • Sleytr, U.B., Messner, P., Pum, D., and Sara, M. 1999. Crystalline bacterial cell surface layers (S layers): from supramolecular cell structure to biomimetics and nanotechnology. Angew Chem Int Ed 38:1035–1054.

    Google Scholar 

  • Smidt, H. and de Vos, W.M. 2004. Anaerobic microbial dehalogenation. Annu Rev Microbiol 58:43–73.

    CAS  Google Scholar 

  • Spring, H. and Schleifer, K.H. 1995. Diversity of magnetotactic bacteria. Syst Appl Microbiol 18:147–153.

    Google Scholar 

  • Stephen, J.R. and Macnaughton, S.J. 1999. Developments in terrestrial bacterial remediation of metals. Curr Opin Biotechnol 10:230–233.

    CAS  Google Scholar 

  • Sturz, A.V., Christie, B.R., and Nowak, J. 2000. Bacterial endophytes: potential role in developing sustainable systems of crop production. Crit Rev Plant Sci 19:1–30.

    Google Scholar 

  • Subrahmanyam, S., Shanmugam, K., Subramanian, T.V., Murugesan, M., Madhav, V.M., and Jeyakumar, D. 2001. Development of electrochemical microbial biosensor for ethanol based on Aspergillus niger. Electroanalysis 13:944–948.

    CAS  Google Scholar 

  • Sylvia, D.M., Fuhrman, J.J., Hartel, P.G., and Zuberer, D.A. 2005. Principles and applications of soil microbiology, pp. 35–38. Prentice Hall: Upper Saddle River, NJ, USA.

    Google Scholar 

  • Temmerman, R., Vervaeren, H., Noseda, B., Boon, N., and Verstraete, W. 2006. Necrotrophic growth of Legionella pneumophila. Appl Environ Microbiol 72:4323–4328.

    CAS  Google Scholar 

  • Tibazarwa, C., Corbisier, P., Mench, M., Bossus, A., Solda, P., Mergeay, M., Wyns, L., and van der Lelie, D. 2001. A microbial biosensor to predict bioavailable nickel in soil and its transfer to plants. Environ Pollut 113:19–26.

    CAS  Google Scholar 

  • Timms-Wilson, T.M., Ellis, R.J., Renwick, A., Rhodes, D.J., Mavrodi, D.V., Weller, D.M., Thomashow, L.S., and Bailey, M.J. 2000. Chromosomal insertion of phenazine-1-carboxylic acid biosynthetic pathway enhances efficacy of damping-off disease control by Pseudomonas fluorescens. Mol Plant Microbe Interact 13:1293–1300.

    CAS  Google Scholar 

  • Timur, S., Pazarlioglu, N., Pilloton, R., and Telefoncu, A. 2003. Detection of phenolic compounds by thick film sensors based on Pseudomonas putida. Talanta 61:87–93.

    CAS  Google Scholar 

  • Tissier, H. 1900. Recherchers sur la flora intestinale normale et pathologique du nourisson. University of Paris: Paris, France.

    Google Scholar 

  • Tkac, J., Gemeiner, P., Svitel, J., Benikovsky, B., Sturdík, E., Vala, V., Petrus, L., and Hrabarova, E. 2000. Determination of total sugars in lignocellulose hydrolysate by a mediated Gluconobacter oxydans biosensor. Anal Chim Acta 420:1–7.

    CAS  Google Scholar 

  • Torsvik, V. and Ovreas, L. 2002. Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245.

    CAS  Google Scholar 

  • Torsvik, V., Goksoyr, J., and Daae, F.D. 1990. High diversity in DNA of soil bacteria. Appl Environ Microbiol 56:782–787.

    CAS  Google Scholar 

  • Van de Wiele, T., Vanhaecke, L., Boeckaert, C., Peru, K., Headley, J., Verstraete,W., and Siciliano, S. 2005. Human colon microbiota transform polycyclic aromatic hydrocarbons to estrogenic metabolites. Environ Health Perspect 113:6–10.

    Google Scholar 

  • van De Woestyne, M., Gellens, V., Anasi, I., and Verstraete, W. 1994. Anaerobic digestion and inter-regional recycling of organic soil supplements. In: Sustainable rural environment and energy network (SREN) – Biogas technology as an environmental solution to pollution, Marchaim, U. and Ney, G. (eds.), REUR Technical series number 33. FAO: Rome (Italy).

    Google Scholar 

  • van Elsas, J.D., Trevors, J.T., and Starodub, M.E. 1998. Bacterial conjugation between pseudomonads in the rhizosphere of wheat. FEMS Microbiol Lett 53:299–306.

    Google Scholar 

  • van Trappen, S., Vandecandelaere, I., Mergaert, J., and Swings, J. 2005. Flavobacterium fryxellicola sp. nov. and Flavobacterium psychrolimnae sp. nov., novel psychrophilic bacteria isolated from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 55:769–772.

    Google Scholar 

  • Ventura, M., O’Connell-Motherway, M., Leahy, S., Moreno-Munoz, J.A., Fitzgerald, G.F., and van Sinderen, D. 2007. From bacterial genome to functionality; case bifidobacteria. Int J Food Microbiol 120:2–12.

    CAS  Google Scholar 

  • Verstaete, W., Wittelbolle, L., Heylen, K., Vanprays, B., de Vos, P., van de Wiele, T., and Boon, N. 2007. Microbial resource management: the road to go for environmental biotechnology. Eng Life Sci 7:117–126.

    Google Scholar 

  • Wagrowski, D.M. and Hites, R.A. 1997. Polycyclic aromatic hydrocarbon accumulation in urban, suburban, and rural vegetation. Environ Sci Technol 31:279–282.

    CAS  Google Scholar 

  • Walsh, U.F., Morrissey, J.P., and O’Gara, F. 2001. Pseudomonas for biocontrol of phytopathogens: from functional genomics to commercial exploitation. Curr Opin Biotechnol 12:289–295.

    CAS  Google Scholar 

  • Wang, C., Knill, E., Glick, B.R., and Defago, G. 2000. Effect of transferring 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its gacA derivative CHA96 on their growth-promoting and disease-suppressive capacities. Can J Microbiol 46:898–907.

    CAS  Google Scholar 

  • Welbaum, G., Sturz, A.V., Dong, Z., and Nowak, J. 2004. Fertilizing soil microorganisms to improve productivity of agroecosystems. Crit Rev Plant Sci 23:175–193.

    CAS  Google Scholar 

  • Wynn, S.G. 2009. Probiotics in veterinary practice. J Am Vet Med Assoc 234:606–613.

    Google Scholar 

  • Yamada, T., Hiraoka, Y., Das Gupta, T.K., and Chakrabarty, A.M. 2004. Rusticyanin, a bacterial electron transfer protein causes G(1) arrest in J774 and apoptosis in human cancer cells. Cell Cycle 3:1182–1187.

    CAS  Google Scholar 

  • Yoshida, N., Hoashi, J., Morita, T., McNiven, S.J., Nakamura, H., and Karube, I. 2001. Improvement of a mediator-type biochemical oxygen demand sensor for on-site measurement. J Biotechnol 88:269–275.

    CAS  Google Scholar 

  • Zafar, S., Aqil, F., and Ahmad, I. 2007. Metal tolerance and biosorption potential of filamentous fungi isolated from metal contaminated agricultural soil. Bioresour Technol 98:2257–2261.

    Google Scholar 

  • Zakaria, M.P., Takada, H., Tsutsumi, S., Ohno, K., Yamada, J., Kouno, E., and Kumata, H. 2002. Distribution of polycyclic aromatic (PAHs) in rivers and estuaries in Malaysia: a widespread input of petrogenic PAHs. Environ Sci Technol 36:1907–1918.

    CAS  Google Scholar 

  • Zocca, C., Di Gregorio, S., Visentini, F., and Vallini, G. 2004. Biodiversity amongst cultivable polycyclic aromatic hydrocarbon-transforming bacteria isolated from an abandoned industrial site. FEMS Microbiol Lett 238:375–382.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahipal Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Ahmad, I., Khan, M.S.A., Aqil, F., Singh, M. (2011). Microbial Applications in Agriculture and the Environment: A Broad Perspective. In: Ahmad, I., Ahmad, F., Pichtel, J. (eds) Microbes and Microbial Technology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7931-5_1

Download citation

Publish with us

Policies and ethics