Skip to main content

Graphene Transistors and Circuits

  • Chapter
  • First Online:
Nanoelectronic Circuit Design

Abstract

Graphene, which is a monolayer of carbon atoms packed into a two-dimensional (2D) honeycomb lattice, has demonstrated high mobility for ballistic transport, high carrier velocity for fast switching, monolayer thin body for optimum electrostatic scaling, and excellent thermal conductivity [15].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A.N. Marchenkov, E.H. Conrad, P.N. First, and W.A. de Heer, “Electronic confinement and coherence in patterned epitaxial graphene,” Science, 312, 1191–1196, 2006.

    Article  Google Scholar 

  2. A.K. Geim and K.S. Novoselov, “The rise of graphene,” Nature Mater., 6, 183–191, 2007.

    Article  Google Scholar 

  3. R.V. Noorden, “Moving towards a graphene world,” Nature, 442, 228–229, 2006.

    Article  Google Scholar 

  4. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, “Electric field effect in atomically thin carbon films,” Science, 306, 666–669, 2004.

    Article  Google Scholar 

  5. Y. Zhang, Y.-W. Tan, H.L. Stormer, and P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature, 438, 201–204, 2005.

    Article  Google Scholar 

  6. W.A. de Heer, C. Berger, E. Conrad, P. First, R. Murali, and J. Meindl, “Pionics: The emerging science and technology of graphene-based nanoelectronics,” in Proc. Intl. Electron Devices Meeting, pp. 199–202, 2007.

    Google Scholar 

  7. A. Gruneis and D.V. Vyalikh, “Tunable hybridization between electronic states of graphene and a metal surface,” Phys. Rev. B., 77, 193407, 2008.

    Article  Google Scholar 

  8. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S.K. Banerjee, L. Colombo, and R.S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils,” Science, 324, 5932, 1312–1314, 2009.

    Article  Google Scholar 

  9. S. Unarunotai, Y. Murata, C.E. Chialvo, H.-S. Kim, S. MacLaren, N. Mason, I. Petrov, and J.A. Rogers, “Transfer of graphene layers grown on SiC wafers to other substrates and their integration into field effect transistors,” Appl. Phys. Lett., 95, 202101, 2009.

    Article  Google Scholar 

  10. J.C. Meyer, A.K. Geim, M.I. Katsnelson, K.S. Novoselov, T.J. Booth, and S. Roth, “The structure of suspended graphene sheets,” Nature, 446, 60–63, 2007.

    Article  Google Scholar 

  11. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, and J. Kong, “Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition,” Nano Lett., 9, 1, 30–35, 2009.

    Article  Google Scholar 

  12. C. Oshima and A. Nagashima, “Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces,” J. Phys. Condens. Matter, 9, 1, 1–20, 1997.

    Article  Google Scholar 

  13. E.V. Castro, K.S. Novoselov, S.V. Morozov, N.M.R. Peres, J.M.B. Lopes dos Santos, J. Nilsson, F. Guinea, A.K. Geim, and A.H. Castro Neto, “Biased bilayer graphene: Semiconductor with a gap tunable by the electric field effect,” Phys. Rev. Lett., 99, 21, 216802, 2007.

    Article  Google Scholar 

  14. J. Nilsson, C.A.H. Neto, F. Guinea, and N.M.R. Peres, “Electronic properties of bilayer and multilayer graphene,” Phys. Rev. B, Condens. Matter, 78, 4, 045405-1–045405-34, 2008.

    Google Scholar 

  15. T. Ohta, A. Bostwick, T. Seyller, K. Horn, and E. Rotenberg, “Controlling the electronic structure of bilayer graphene,” Science, 313, 5789, 951–954, 2006.

    Article  Google Scholar 

  16. H. Schmidt, T. Lüdtke, P. Barthold, E. McCann, V.I. Fal’ko, and R.J. Haug, “Tunable graphene system with two decoupled monolayers,” Appl. Phys. Lett., 93, 172108, 2008.

    Article  Google Scholar 

  17. J.M.B. Lopes dos Santos, N.M.R. Peres, and A.H. Castro Neto, “Graphene bilayer with a twist: Electronic structure,” Phys. Rev. Lett., 99, 256802, 2007.

    Article  Google Scholar 

  18. M.Y. Han, B. Özyilmaz, Y. Zhang, and P. Kim, “Energy band-gap engineering of graphene nanoribbons,” Phys. Rev. Lett., 98, 206805, 2007.

    Article  Google Scholar 

  19. C.T. White, J. Li, D. Gunlycke, and J.W. Mintmire, “Hidden one-electron interactions in carbon nanotubes revealed in graphene nanostrips,” Nano Lett., 7, 825–830, 2007.

    Article  Google Scholar 

  20. X. Wang, L. Zhang, S. Lee, and H. Dai, “Chemically derived, ultrasmooth graphene nanoribbon semiconductors,” Science, 319, 1229–1232, 2008.

    Article  Google Scholar 

  21. L. Jiao, L. Zhang, X. Wang, G. Diankov, and H. Dai, “Narrow graphene nanoribbons from carbon nanotubes,” Nature, 458, 877–880, 2009.

    Article  Google Scholar 

  22. K.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, and J.M. Tour, “Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons,” Nature, 458, 872–876, 2009.

    Article  Google Scholar 

  23. J. Delgado, J.M.R. Herrera, X. Jia, D.A. Cullen, H. Muramatsu, Y.A. Kim, T. Hayashi, Z. Ren, D.J. Smith, Y. Okuno, T. Ohba, H. Kanoh, K. Kaneko, M. Endo, H. Terrones, M.S. Dresselhaus, and M. Terrone, “Bulk production of a new form of sp2 carbon: Crystalline graphene nanoribbons,” Nano Lett., 8, 9, 2773–2778, 2008.

    Article  Google Scholar 

  24. P. Zhao, M. Choudhury, K. Mohanram, and J. Guo, “Computational model of edge effects in graphene nanoribbon transistors,” Nano Res., 1, 5, 395–402, 2008.

    Article  Google Scholar 

  25. Y.-W. Son, M.L. Cohen, and S.G. Louie, “Energy gaps in graphene nanoribbons,” Phys. Rev. Lett., 97, 216803, 2006.

    Article  Google Scholar 

  26. P. Shemella and S.K. Nayak, “Electronic structure and band-gap modulation of graphene via substrate surface chemistry,” Appl. Phys. Lett., 94, 032101, 2009.

    Article  Google Scholar 

  27. Z. Ni, T. Yu, Y.H. Lu, Y.Y. Wang, Y.P. Feng, and Z.X. Shen, “Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening,” ACS Nano, 2, 11, 2301–2305, 2008.

    Article  Google Scholar 

  28. J. Bai, X. Zhong, S. Jiang, Y. Huang, and X. Duan, “Graphene nanomesh,” Nat. Nanotechnol., 5, 190–194, 2010.

    Article  Google Scholar 

  29. X. Wang, Y. Ouyang, X. Li, H. Wang, J. Guo, and H. Dai, “Room temperature all semiconducting sub-10 nm graphene nanoribbon FETs,” Phys. Rev. Lett., 100, 206803, 2008.

    Article  Google Scholar 

  30. B. Huard, N. Stander, J.A. Sulpizio, and D. Goldhaber-Gordon, “Evidence of the role of contacts on the observed electron-hole asymmetry in graphene,” Phys. Rev. B, 78, 121402, 2008.

    Article  Google Scholar 

  31. M.C. Lemme, T.J. Echtermeyer, M. Baus, and H. Kurz, “A graphene field-effect device,” Electron Device Lett., 28, 4, 282–284, 2009.

    Article  Google Scholar 

  32. I. Meric, M.Y. Han, A.F. Young, B. Ozyilmaz, P. Kim, and K.L. Shepard, “Current saturation in zero-bandgap, top-gated graphene field effect transistors,” Nat. Nanotechnol., 3, 1–6, 2008.

    Article  Google Scholar 

  33. J.R. Williams, L. DiCarlo, C.M. Marcus, “Quantum hall effect in a gate-controlled p-n junction of graphene,” Science, 317, 5838, 638–641, 2007.

    Article  Google Scholar 

  34. G. Fiori and G. Iannaccone, “Simulation of graphene nanoribbon field effect transistors,” IEEE Electron. Device Lett., 28, 760–762, 2007.

    Article  Google Scholar 

  35. G. Liang, N. Neophytou, M. Lundstrom, and D.E. Nikonov, “Ballistic graphene nanoribbon metal oxide semiconductor field-effect transistors: A full real-space quantum transport simulation,” J. Appl. Phys., 102, 054307, 2007.

    Article  Google Scholar 

  36. G. Liang, N. Neophytou, D.E. Nikonov, and M. Lundstrom, “Performance projections for ballistic graphene nanoribbon field-effect transistors,” IEEE Trans. Electron. Device, 54, 677–682, 2007.

    Article  Google Scholar 

  37. Y. Yoon, G. Fiori, S. Hong, G. Iannaccone, and J. Guo. “Performance comparison of graphene nanoribbon FETs with Schottky contacts and doped reservoirs,” IEEE Trans. Electron Device, 55, 2314–2323, 2008.

    Article  Google Scholar 

  38. X. Wang, X. Li, L. Zhang, Y. Yoon, P.K. Weber, H. Wang, J. Guo, and H. Dai, “N-doping of graphene through electrothermal reactions with ammonia,” Science, 324, 5928, 768–771, 2009.

    Article  Google Scholar 

  39. I. Meric, N. Baklitskaya, P. Kim, and K.L. Shepard, “RF performance of top-gated, zero-bandgap graphene field effect transistors,” in Proc. Intl. Electron Devices Meeting, pp. 1–4, 2008.

    Google Scholar 

  40. Y. Lin, K.A. Jenkins, A. Valdes-Garcia, J.P. Small, D.B. Farmer, and Ph. Avouris, “Operation of graphene transistors at gigahertz frequencies,” Nano Lett., 9, 1, 422–426, 2009.

    Article  Google Scholar 

  41. J.S. Moon, D. Curtis, M. Hu, D. Wong, C. McGuire, P.M. Campbell, G. Jernigan, J.L. Tedesco, B. Vanmil, R. Myers-Ward, C. Eddy, and D.K. Gaskill, “Epitaxial-graphene RF field-effect transistors on Si-face 6H-SiC substrates,” IEEE Electron Device Lett., 30, 6, 650–652, 2009.

    Article  Google Scholar 

  42. D.B. Farmer, H.-Y. Chiu, Y.-M. Lin, K.A. Jenkins, F. Xia, and Ph. Avouris, “Utilization of a buffered dielectric to achieve high field-effect carrier mobility in graphene transistors,” Nano Lett., 9, 12, 4474–4478, 2009.

    Article  Google Scholar 

  43. Y. Lin, C. Dimitrakopoulos, K.A. Jenkins, D.B. Farmer, H.-Y. Chiu, A. Grill, and Ph. Avouris, “100-GHz transistors from wafer-scale epitaxial graphene,” Science, 327, 5966, 662, 2010.

    Article  Google Scholar 

  44. H. Wang, D. Nezich, J. Kong, and T. Palacios, “Graphene frequency multipliers,” IEEE Electron Device Lett., 30, 5, 547–549, 2009.

    Article  Google Scholar 

  45. Z. Chen, Y.-M. Lin, M.J. Rooks, and Ph. Avouris, “Graphene nano-ribbon electronics,” Physica E, 40, 228, 2007.

    Article  Google Scholar 

  46. G. Fiori and G. Iannaccone, “On the possibility of tunable-gap bilayer graphene FET,” IEEE Electron Device Lett., 30, 261–264, 2009.

    Article  Google Scholar 

  47. Y. Ouyang, P. Campbell, and J. Guo, “Analysis of ballistic monolayer and bilayer graphene field-effect transistors,” Appl. Phys. Lett., 92, 063120, 2008.

    Article  Google Scholar 

  48. F. Xia, D.B. Farmer, Y.-M. Lin, and Ph. Avouris, “Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature,” Nano Lett., 10, 715–718, 2010.

    Article  Google Scholar 

  49. Y. Ouyang, H. Dai, and J. Guo, “Projected performance advantage of multilayer graphene nanoribbons as a transistor channel material,” Nano Res., 3, 8–15, 2010.

    Article  Google Scholar 

  50. M. Choudhury, Y. Yoon, J. Guo, and K. Mohanram, “Technology exploration for graphene nanoribbon FETs,” in Proc. Design Automation Conference, pp. 272–277, 2008.

    Google Scholar 

  51. Y.-M. Lin, J. Appenzeller, J. Knoch, and Ph. Avouris, “High-performance carbon nanotube field-effect transistor with tunable polarities,” IEEE Trans. Nanotechnol., 4, 481–489, 2005.

    Article  Google Scholar 

  52. I. O’Connor, J. Liu, F. Gaffiot, F. Pregaldiny, C. Lallement, C. Maneux, J. Goguet, F. Fregonese, T. Zimmer, L. Anghel, T.-T. Dang, and R. Leveugle, “CNTFET modeling and reconfigurable logic-circuit design,” IEEE Trans. Circuits Syst. I, 54, 11, 2365–2379, 2007.

    Article  Google Scholar 

  53. M.H. Ben-Jamaa, D. Atienza, Y. Leblebici, and G. De Micheli, “Programmable logic circuits based on ambipolar CNFET,” in Proc. Design Automation Conference, pp. 339–340, 2008.

    Google Scholar 

  54. F. Mo and R.K. Brayton, “Whirlpool PLAs: A regular logic structure and their synthesis,” in Proc. Intl. Conference Computer-Aided Design, pp. 543–550, 2002.

    Google Scholar 

  55. T. Sasao, Switching Theory for Logic Synthesis, Kluwer Academic Publishers, Netherlands,1999.

    Google Scholar 

  56. M.H. Ben-Jamaa, K. Mohanram, and G. De Micheli, “Novel library of logic gates with ambipolar CNTFETs: Opportunities for multi-level logic synthesis,” in Proc. Design Automation and Test in Europe Conference, pp. 622–627, 2009.

    Google Scholar 

  57. M.H. Ben-Jamaa, K. Mohanram, and G. De Micheli, “Power consumption of logic circuits in ambipolar carbon nanotube technology,” in Proc. Design Automation and Test in Europe Conference, pp. 622–627, 2010.

    Google Scholar 

  58. W.Y. Choi, B.-G. Park, J.D. Lee, and T.-J.K. Liu, “Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec,” IEEE Electron Device Lett., 28, 8, 743–745, 2007.

    Article  Google Scholar 

  59. M. Luisier and G. Klimeck, “Performance analysis of statistical samples of graphene nanoribbon tunneling transistors with line edge roughness,” Appl. Phys. Lett., 94, 223505, 2009.

    Article  Google Scholar 

  60. Q. Zhang, T. Fang, H. Xing, A. Seabaugh, and D. Jena, “Graphene nanoribbon tunnel transistors,” IEEE Electron Device Lett., 29, 1344–1346, 2008.

    Article  Google Scholar 

  61. P. Zhao, J. Chauhan, and J. Guo, “Computational study of tunneling transistor based on graphene nanoribbon,” Nano Lett., 9, 684–688, 2009.

    Article  Google Scholar 

  62. G. Fiori and G. Iannaccone, “Ultralow-voltage bilayer graphene tunnel FET,” IEEE Trans. Electron Devices, 55, 10, 1096–1098, 2008.

    Google Scholar 

  63. M.P. Anantram, M.S. Lundstrom, and D.E. Nikonov, “Modeling of nanoscale devices,” Proc. IEEE, 96, 1511–1550, 2008.

    Article  Google Scholar 

  64. Y. Ouyang, Y. Yoon, and J. Guo “Scaling behaviors of graphene nanoribbon FETs: A 3D quantum simulation,” IEEE Trans. Electron Devices, 54, 2223, 2007.

    Article  Google Scholar 

  65. G. Fiori and G. Iannaccone, “NanoTCAD ViDES,” 2008. DOI: 10254/nanohubr5116.3.

    Google Scholar 

  66. D. Jimenez, “A current-voltage model for Schottky-barrier graphene-based transistors,” Nanotechnology, 19, 345204, 2008.

    Article  Google Scholar 

  67. A. Rahman, J. Guo, S. Datta, and M.S. Lundstrom, “Theory of ballistic nanotransistors,” IEEE Trans. Electron Devices, 50, 1853–1864, 2003.

    Article  Google Scholar 

  68. S. Datta, Electronic Tansport in Mesoscopic Systems, New York: Cambridge University Press, 1995.

    Google Scholar 

  69. http://www.nanohub.org

  70. N.H. Frank and L.A. Young, “Transmission of electrons through potential barriers,” Phys. Rev., 38, 80–86, 1931.

    Article  Google Scholar 

  71. X. Yang, G. Fiori, G. Iannaccone, and K. Mohanram, “Physics-based semi-analytical model for Schottky-barrier carbon nanotube and graphene nanoribbon transistors,” in Proc. Great Lakes Symposium on VLSI, 2010.

    Google Scholar 

  72. D. Gunlycke and C.T. White, “Tight-binding energy dispersions of armchair-edge graphene nanostrips,” Phys. Rev. B, 77, 115116, 2008.

    Article  Google Scholar 

  73. S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, and Ph. Avouris, “Carbon nanotubes as Schottky barrier transistors,” Phys. Rev. Lett., 89, 106801, 2002.

    Article  Google Scholar 

  74. S. Koswatta and M. Lundstrom, “Influence of phonon scattering on the performance of p-i-n band-to-band tunneling transistors,” Appl. Phys. Lett., 92, 043125, 2008.

    Article  Google Scholar 

  75. S. Koswatta, M.S. Lundstrom, and D.E. Nikonov, “Performance comparison between p-i-n tunneling transistors and conventional MOSFETs,” IEEE Trans. Electron Devices, 56, 456–465, 2009.

    Article  Google Scholar 

  76. M. Lundstrom, J. Guo, Nanoscale Transistors: Device Physics, Modeling and Simulation, New York: Springer, 2006.

    Google Scholar 

  77. K. Nakada and M. Fujita, “Edge state in graphene ribbons: Nanometer size effect and edge shape dependence,” Phys. Rev. B, 54, 17954–17961, 1996.

    Article  Google Scholar 

  78. K. Natori, “Ballistic metal oxide semiconductor field effect transistor,” J. Appl. Phys., 76, 4879–4890, 1994.

    Article  Google Scholar 

  79. X. Yang, X. Dou, A. Rouhanipour, L. Zhi, H.J. Räder, and K. Müllen “Two-dimensional graphene nanoribbons,” J. Am. Chem. Soc., 130, 4216–4217, 2008.

    Article  Google Scholar 

  80. X. Yang, G. Liu, A.A. Balandin, and K. Mohanram, “Triple-mode single-transistor graphene amplifier and its applications,” ACS Nano, 4, 10, 5532–5538, 2010.

    Article  Google Scholar 

  81. Yang-glsvlsi-10, “Graphene tunneling FET and its applications in low-power circuit design,” Proc. Great Lakes Symposium on VLSI, 263–268, 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kartik Mohanram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Mohanram, K., Yang, X. (2011). Graphene Transistors and Circuits. In: Jha, N., Chen, D. (eds) Nanoelectronic Circuit Design. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7609-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7609-3_10

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7444-0

  • Online ISBN: 978-1-4419-7609-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics