Skip to main content

The Coanda Effect

  • Chapter
  • First Online:
Modeling Multiphase Materials Processes

Abstract

Attachment of flow to a wall or walls placed around the flow is usually referred to as the Coanda effect [1]. According to Kadosch [1,2], this effect was first reported by Young in 1800. Since then many investigations have been made on its impact in a variety of flow fields [3,4,5,6]. In particular, the application to flow control in pneumatics and hydraulic circuits has been extensively investigated [3,6]. Kirshner [1] identified the following effects on wall attachment in fluid amplifiers.

  • Changing position of walls

  • Diverging walls

  • Single-sided case

  • Mean flow and fluctuation

  • Secondary nozzles

  • Pressure distribution

  • Wall height and aspect ratio

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kirshner TM (1966) Fluid amplifiers. McGraw-Hill, New York, pp 118–124

    Google Scholar 

  2. Kadosh M (1964) Attachment of a jet to a curved wall, In: Proceedings of the fluid amplification symposium, 2nd edn, vol 4. Harry Diamond Laboratories, Washington DC, p 5

    Google Scholar 

  3. Japan Hydraulics and Pneumatics Society (1989) Handbook of hydraulics and pneumatics. Ohm Book Co Ltd, Tokyo, p 51,569

    Google Scholar 

  4. Bourque C, Newmann BG (1960) Reattachment of a two-dimensional incompressible jet to an adjacent flat plate. Aeronaut Quart 11:201

    Google Scholar 

  5. Sawyer RA (1963) Two-dimensional reattaching jet flows including the effects of curvature on entrainment. J Fluid Mech 17:481

    Article  MATH  Google Scholar 

  6. Shimizu A (1983) Drag and wake modification of axisymmetric bluff bodies using coanda blowing, J Jpn Hydraulics Pneumatics Soc 14:488

    Google Scholar 

  7. Freund JB, Mungal MG (1994) Drag and wake modification of axisymmetric bluff bodies using coanda blowing, J Aircraft 31:572–578

    Article  Google Scholar 

  8. Wille R, Fernholz (1965) Report on the first European mechanics colloquium, on the Coanda effect. J Fluid Mech 23:801–819

    Google Scholar 

  9. Szekeky J, Carlsson G, Helle L (1988) Ladle metallurgy. Springer, New York

    Google Scholar 

  10. Szekeky J, Ilegbusi OJ (1989).The physical and mathematical modeling of tundish operations. Springer, New York

    Book  Google Scholar 

  11. ISIJ (1984) Recent developments in steelmaking technologies using stirring, 100th and 101th Nishiyama Memorial Lecture. ISIJ, Tokyo

    Google Scholar 

  12. Sahai Y, St Pierre GR (1992).Advances in transport processes in metallurgical systems. Elsevier, Amsterdam

    Google Scholar 

  13. Mazumdar D, Guthrie RIL (1995) The physical and mathematical modelling of gas stirred ladle systems. ISIJ Int 35:1–20

    Article  Google Scholar 

  14. Iguchi M, Kawabata H, Nakajima K, Morita Z (1995) Measurement of bubble characteristics in a molten iron bath at 1600∘C using an electroresistivity probe. Metall Mater Trans B 26B: 67–74

    Article  Google Scholar 

  15. Tacke TH, Schubert HG, Weber DJ, Schwerdtfeger K (1985) Characteristics of round vertical gas bubble jets. Metal Trans B 16:263–275

    Article  Google Scholar 

  16. Sano M, Makino H, Ozawa Y, Mori K (1986) Behavior of gas jet and plume in liquid metal. Trans ISIJ 26:298–304

    Article  Google Scholar 

  17. Castillejos AH, Brimacombe JK (1989) Physical characteristics of gas jets injected vertically upward into liquid metal, Metal Trans B 20:595–601

    Article  Google Scholar 

  18. Taniguchi S, Kikuchi A, Hatsuzaki H, Bessho N (1988) Dispersion of bubbles and gas-liquid mass transfer in a gas-stirred system. Trans ISIJ 28:262–270

    Article  Google Scholar 

  19. Iguchi M, Nozawa K, Morita Z (1991) Bubble characteristics in the momentum region of air-water vertical bubbling jet. ISIJ Int 31:952–959

    Article  Google Scholar 

  20. Iguchi M, Nozawa K, Tomida H, Morita Z (1992) Bubble characteristics in the buoyancy region of a vertical bubbling jet. ISIJ Int 32:747–754

    Article  Google Scholar 

  21. Iguchi M, Ueda H, Uemura T (1995) Bubble and liquid flow characteristics in a vertical bubbling jet. Int J Multiphase Flow 21:861–873

    Article  MATH  Google Scholar 

  22. Iguchi M, Sasaki K, Nakajima K, Kawabata H (1998) Coanda effect on bubble characteristics in a bubbling jet rising near the side wall of a cylindrical vessel. ISIJ Int 38(12):1297–1303

    Article  Google Scholar 

  23. Iguchi M, Kondoh T, Uemura T (1994) Simultaneous measurement of liquid and bubble velocities in a cylindrical bath subject to centric bottom gas injection. Int J Multiphase Flow 20:753–762

    Article  MATH  Google Scholar 

  24. Rajaratnam N (1976) Turbulent jet. Elsevier, Amsterdam

    Google Scholar 

  25. Verhoff A (1963) The two-dimensional turbulent wall jet without an external free stream, Rep. 626, Princeton University

    Google Scholar 

  26. Rajaratnam N, Pani BS (1974) Three dimensional turblent wall jets, Trans ASCE 100(HY1) 69

    Google Scholar 

  27. Newman BG, Patel RP, Savage SB, Tjio HK (1972) Three-dimensional wall jet originating from a circular office, Aeronaut Quart 23:189

    Google Scholar 

  28. Kato Y, Nakanishi K, Nozaki T, Suzuki K, Emi T (1982) Wave motion of metal bath in bottom blown converter. Tetsu-to-Hagane 68:1604–1612

    Google Scholar 

  29. Koch K, Roth C, Peter M (1996) Cold model investigations of fluid flow and mixing characteristics by bottom-blowing in discontinuous metallurgical reactors. ISIJ Int 36(Suppl): 50–53

    Article  Google Scholar 

  30. Mori K, Sano M (1981) Process kinetics in injection metallurgy. Tetsu-to-Hagane 67:672–695

    Google Scholar 

  31. Mazumdar D, Guthrie RIL (1986) Mixing models for gas stirred metallurgical reactors. Metall Trans B 17B:725–733

    Article  Google Scholar 

  32. Iguchi M, Tokunaga H, Tatemichi H (1997) Bubble and liquid flow characteristics in a wood’s metal bath stirred by bottom helium gas injection. Metall Mat Trans B 28B:1053–1061

    Article  Google Scholar 

  33. Iguchi M, Takahashi K, Kiuchi H (1999) Merging distance of two air-water vertical bubbling jets subjected to coanda effect. ISIJ Int 39:1311–1313

    Article  Google Scholar 

  34. Umezawa K (1984) 100th and 101th Nishiyama Memorial Lecture, ISIJ, Tokyo

    Google Scholar 

  35. Refining Limit for Impurities (1996) ed. Refining forum for high-temperature process division of ISIJ and reaction group of 19th committee of JSPS. ISIJ, Tokyo, p 151

    Google Scholar 

  36. Sasaki K, Iguchi M (1999) Bubble and liquid flow characteristics in interacting two water–air Vertical bubbling jets in a cylindrical vessel. Tetsu-to-Hagane 85:432–438

    Google Scholar 

  37. Iguchi M, Sasaki K (1999) Coanda effect on liquid flow characteristics in a bubbling jet rising near the side wall of a cylindrical vessel. ISIJ Int 39:213–218

    Article  Google Scholar 

  38. Castello-Branco MASC, Schwerrtdfeger K (1994) Large-scale measurements of the physical characteristics of round vertical bubble plumes in liquids. Metall Mater Trans B 25B:359–371

    Article  Google Scholar 

  39. Davidson L, Amick EH (1956) Formation of gas bubbles at horizontal orifices, AIChE J 2: 337–342

    Article  Google Scholar 

  40. Xie Y, Orsten S, Oeters F (1992) Behaviour of bubbles at gas blowing into liquid wood’s metal. ISIJ Int 32:66–75

    Article  Google Scholar 

  41. Iguchi M, Tomida T, Nakajima K, Morita Z (1992) Cold model experiments on mass transfer from a solid body immersed in vertical bubbling jets. Tetsu-to-Hagane 78:1786

    Google Scholar 

  42. Iguchi M, Tomida T, Nakajima K, Morita Z (1993) Mass transfer from a solid body immersed in a cylindrical bath with bottom gas injection. ISIJ Int 33:728

    Article  Google Scholar 

  43. Iguchi M, Okita K, Nakatani T, Kasai N (1997) Structure of turbulent round bubbling jet generated by premixed gas and liquid injection. Int J Multiphase Flow 23:249–262

    Article  MATH  Google Scholar 

  44. Iguchi M, Takeuchi H, Morita Z (1990) The flow field in air-water vertical bubbling jets in a cylindrical vessel. Tetsu-to-Hagane 76:699–706

    Google Scholar 

  45. Iguchi M, Takeuchi H, Morita Z (1991) The flow field in air-water vertical bubbling jets in a cylindrical vessel. ISIJ Int 31:246–253

    Article  Google Scholar 

  46. Sasaki K, Iguchi M (1999) Bubble and liquid flow characteristics in interacting two water–air vertical bubbling jets in a cylindrical vessel. Tetsu-to-Hagane 85:432–438

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manabu Iguchi .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer New York

About this chapter

Cite this chapter

Iguchi, M., Ilegbusi, O.J. (2011). The Coanda Effect. In: Modeling Multiphase Materials Processes. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7479-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7479-2_3

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7478-5

  • Online ISBN: 978-1-4419-7479-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics