Skip to main content

Molecular Systems Biology of Sic1 in Yeast Cell Cycle Regulation Through Multiscale Modeling

  • Conference paper
  • First Online:
Advances in Systems Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 736))

  • 2882 Accesses

Abstract

Cell cycle control is highly regulated to guarantee the precise timing of events essential for cell growth, i.e., DNA replication onset and cell division. Failure of this control plays a role in cancer and molecules called cyclin-dependent kinase (Cdk) inhibitors (Ckis) exploit a critical function in cell cycle timing. Here we present a multiscale modeling where experimental and computational studies have been employed to investigate structure, function and temporal dynamics of the Cki Sic1 that regulates cell cycle progression in Saccharomyces cerevisiae. Structural analyses reveal molecular details of the interaction between Sic1 and Cdk/cyclin complexes, and biochemical investigation reveals Sic1 function in analogy to its human counterpart p27Kip1, whose deregulation leads to failure in timing of kinase activation and, therefore, to cancer. Following these findings, a bottom-up systems biology approach has been developed to characterize modular networks addressing Sic1 regulatory function. Through complementary experimentation and modeling, we suggest a mechanism that underlies Sic1 function in controlling temporal waves of cyclins to ensure correct timing of the phase-specific Cdk activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Obaya AJ, Sedivy JM (2002) Regulation of cyclin-Cdk activity in mammalian cells. Cell Mol Life Sci 59(1):126–142

    CAS  PubMed  Google Scholar 

  2. Morgan DO (1995) Principles of CDK regulation. Nature 374(6518):131–134

    CAS  PubMed  Google Scholar 

  3. De Clercq A, Inze D (2006) Cyclin-dependent kinase inhibitors in yeast, animals, and plants: a functional comparison. Crit Rev Biochem Mol Biol 41(5):293–313

    PubMed  Google Scholar 

  4. Sherr CJ, Roberts JM (1995) Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev 9(10):1149–1163

    CAS  PubMed  Google Scholar 

  5. Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13(12):1501–1512

    CAS  PubMed  Google Scholar 

  6. Tsihlias J, Kapusta L, Slingerland J (1999) The prognostic significance of altered cyclin-dependent kinase inhibitors in human cancers. Annu Rev Med 50:401–423

    CAS  PubMed  Google Scholar 

  7. Besson A, Dowdy SF, Roberts JM (2008) CDK inhibitors: cell cycle regulators and beyond. Dev Cell 14(2):159–169

    CAS  PubMed  Google Scholar 

  8. Chu IM, Hengst L, Slingerland JM (2008) The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy. Nat Rev Cancer 8(4):253–267

    CAS  PubMed  Google Scholar 

  9. Abukhdeir AM, Park BH (2008) P21 and p27: roles in carcinogenesis and drug resistance. Expert Rev Mol Med 10:e19

    PubMed  PubMed Central  Google Scholar 

  10. Hershko DD (2008) Oncogenic properties and prognostic implications of the ubiquitin ligase Skp2 in cancer. Cancer 112(7):1415–1424

    CAS  PubMed  Google Scholar 

  11. Mishra A, Godavarthi SK, Jana NR (2009) UBE3A/E6-AP regulates cell proliferation by promoting proteasomal degradation of p27. Neurobiol Dis 36(1):26–34

    CAS  PubMed  Google Scholar 

  12. Slingerland J, Pagano M (2000) Regulation of the cdk inhibitor p27 and its deregulation in cancer. J Cell Physiol 183(1):10–17

    CAS  PubMed  Google Scholar 

  13. Lloyd RV, Erickson LA, Jin L, Kulig E, Qian X, Cheville JC, Scheithauer BW (1999) p27kip1: a multifunctional cyclin-dependent kinase inhibitor with prognostic significance in human cancers. Am J Pathol 154(2):313–323

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Belletti B, Nicoloso MS, Schiappacassi M, Chimienti E, Berton S, Lovat F, Colombatti A, Baldassarre G (2005) p27(kip1) functional regulation in human cancer: a potential target for therapeutic designs. Curr Med Chem 12(14):1589–1605

    CAS  PubMed  Google Scholar 

  15. Polyak K, Lee MH, Erdjument-Bromage H, Koff A, Roberts JM, Tempst P, Massagué J (1994) Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 78(1):59–66

    CAS  PubMed  Google Scholar 

  16. Toyoshima H, Hunter T (1994) p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell 78(1):67–74

    CAS  PubMed  Google Scholar 

  17. Coats S, Flanagan WM, Nourse J, Roberts JM (1996) Requirement of p27Kip1 for restriction point control of the fibroblast cell cycle. Science 272(5263):877–880

    CAS  PubMed  Google Scholar 

  18. Ray A, James MK, Larochelle S, Fisher RP, Blain SW (2009) p27Kip1 inhibits cyclin D-cyclin-dependent kinase 4 by two independent modes. Mol Cell Biol 29(4):986–999

    CAS  PubMed  Google Scholar 

  19. LaBaer J, Garrett MD, Stevenson LF, Slingerland JM, Sandhu C, Chou HS, Fattaey A, Harlow E (1997) New functional activities for the p21 family of CDK inhibitors. Genes Dev 11(7):847–862

    CAS  PubMed  Google Scholar 

  20. Cheng M, Olivier P, Diehl JA, Fero M, Roussel MF, Roberts JM, Sherr CJ (1999) The p21(Cip1) and p27(Kip1) CDK ‘inhibitors’ are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J 18(6):1571–83

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Fero ML, Randel E, Gurley KE, Roberts JM, Kemp CJ (1998) The murine gene p27Kip1 is haplo-insufficient for tumour suppression. Nature 396(6707):177–180

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Loda M, Cukor B, Tam SW, Lavin P, Fiorentino M, Draetta GF, Jessup JM, Pagano M (1997) Increased proteasome-dependent degradation of the cyclin-dependent kinase inhibitor p27 in aggressive colorectal carcinomas. Nat Med 3(2):231–234

    CAS  PubMed  Google Scholar 

  23. Slingerland J, Pagano M (2000) Regulation of the cdk inhibitor p27 and its deregulation in cancer. J Cell Physiol 183(1):10–17

    CAS  PubMed  Google Scholar 

  24. Coqueret O (2003) New roles for p21 and p27 cell-cycle inhibitors: a function for each cell compartment? Trends Cell Biol 13(2):65–70

    CAS  PubMed  Google Scholar 

  25. Futcher B (1996) Cyclins and the wiring of the yeast cell cycle. Yeast 12(16):1635–1646

    CAS  PubMed  Google Scholar 

  26. Nasmyth K (1996) At the heart of the budding yeast cell cycle. Trends Genet 12(10): 405–412

    CAS  PubMed  Google Scholar 

  27. Cross FR, Yuste-Rojas M, Gray S, Jacobson MD (1999). Specialization and targeting of B-type cyclins. Mol Cell 4(1):11–9

    CAS  PubMed  Google Scholar 

  28. Murray AW (2004) Recycling the cell cycle: cyclins revisited. Cell 116(2):221–234

    CAS  PubMed  Google Scholar 

  29. Bloom J, Cross FR (2007) Multiple levels of cyclin specificity in cell-cycle control. Nat Rev Mol Cell Biol 8(2):149–160

    CAS  PubMed  Google Scholar 

  30. Chang F, Herskowitz I (1990) Identification of a gene necessary for cell cycle arrest by a negative growth factor of yeast: FAR1 is an inhibitor of a G1 cyclin, CLN2. Cell 63(5):999–1011

    CAS  PubMed  Google Scholar 

  31. Peter M, Herskowitz I (1994) Direct inhibition of the yeast cyclin-dependent kinase Cdc28-Cln by Far1. Science 265(5176):1228–1231

    CAS  PubMed  Google Scholar 

  32. Mendenhall MD (1993) An inhibitor of p34CDC28 protein kinase activity from Saccharomyces cerevisiae. Science 259(5092):216–219

    CAS  PubMed  Google Scholar 

  33. Schwob E, Bohm T, Mendenhall MD, Nasmyth K (1994) The B-type cyclin kinase inhibitor p40SIC1 controls the G1 to S transition in S. cerevisiae. Cell 79(2):233–244

    CAS  PubMed  Google Scholar 

  34. Alberghina L, Martegani E, Mariani L, Bortolan G (1983–1984) A bimolecular mechanism for the cell size control of the cell cycle. Biosystems 16(3–4):297–305

    PubMed  Google Scholar 

  35. Alberghina L, Porro D, Cazzador L (2001) Towards a blueprint of the cell cycle. Oncogene 20(9):1128–1134

    CAS  PubMed  Google Scholar 

  36. Deshaies RJ (1997) Phosphorylation and proteolysis: partners in the regulation of cell division in budding yeast. Curr Opin Genet Dev 7(1):7–16

    CAS  PubMed  Google Scholar 

  37. Zachariae W, Nasmyth K (1999) Whose end is destruction: cell division and the anaphase-promoting complex. Genes Dev 13(16):2039–2058

    CAS  PubMed  Google Scholar 

  38. Knapp D, Bhoite L, Stillman DJ, Nasmyth K (1996) The transcription factor Swi5 regulates expression of the cyclin kinase inhibitor p40SIC1. Mol Cell Biol 16(10):5701–5707

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Toyn JH, Johnson AL, Donovan JD, Toone WM, Johnston LH (1997) The Swi5 transcription factor of Saccharomyces cerevisiaehas a role in exit from mitosis through induction of the cdk-inhibitor Sic1 in telophase. Genetics 145(1):85–96

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Aerne BL, Johnson AL, Toyn JH, Johnston LH (1998) Swi5 controls a novel wave of cyclin synthesis in late mitosis. Mol Biol Cell 9(4):945–956

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Schneider BL, Yang QH, Futcher AB (1996) Linkage of replication to start by the Cdk inhibitor Sic1. Science 272(5261):560–562

    CAS  PubMed  Google Scholar 

  42. Verma R, Annan RS, Huddleston MJ, Carr SA, Reynard G, Deshaies RJ (1997) Phosphorylation of Sic1p by G1 Cdk required for its degradation and entry into S phase. Science 278(5337):455–460

    CAS  PubMed  Google Scholar 

  43. Thornton BR, Toczyski DP (2003) Securin and B-cyclin/CDK are the only essential targets of the APC. Nat Cell Biol 5(12):1090–1094

    CAS  PubMed  Google Scholar 

  44. Nash P, Tang X, Orlicky S, Chen Q, Gertler FB, Mendenhall MD, Sicheri F, Pawson T, Tyers M (2001) Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. Nature 414(6863):514–521

    CAS  PubMed  Google Scholar 

  45. Skowyra D, Craig KL, Tyers M, Elledge SJ, Harper JW (1997) F-box proteins are receptors that recruit phosphorylated substrates to the SCF ubiquitin–ligase complex. Cell 91(2): 209–219

    CAS  PubMed  Google Scholar 

  46. Feldman RM, Correll CC, Kaplan KB, Deshaies RJ (1997) A complex of Cdc4p, Skp1p, and Cdc53p/cullin catalyzes ubiquitination of the phosphorylated CDK inhibitor Sic1p. Cell 91(2):221–230

    CAS  PubMed  Google Scholar 

  47. Verma R, Feldman RM, Deshaies RJ (1997) SIC1 is ubiquitinated in vitro by a pathway that requires CDC4, CDC34, and cyclin/CDK activities. Mol Biol Cell 8(8):1427–1437

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Verma R, McDonald H, Yates JR 3rd, Deshaies RJ (2001) Selective degradation of ubiquitinated Sic1 by purified 26S proteasome yields active S phase cyclin-Cdk. Mol Cell 8(2):439–448

    CAS  PubMed  Google Scholar 

  49. Rossi RL, Zinzalla V, Mastriani A, Vanoni M, Alberghina L (2005) Subcellular localization of the cyclin dependent kinase inhibitor Sic1 is modulated by the carbon source in budding yeast. Cell Cycle 4(12):1798–1807

    CAS  PubMed  Google Scholar 

  50. Lengronne A, Schwob E (2002) The yeast CDK inhibitor Sic1 prevents genomic instability by promoting replication origin licensing in late G(1). Mol Cell 9(5):1067–1078

    CAS  PubMed  Google Scholar 

  51. Caburet S, Conti C, Bensimon A (2002) Combing the genome for genomic instability. Trends Biotechnol 20(8):344–350

    CAS  PubMed  Google Scholar 

  52. Nugroho TT Mendenhall MD (1994) An inhibitor of yeast cyclindependent protein kinase plays an important role in ensuring the genomic integrity of daughter cells. Mol Cell Biol 14(5):3320–3328

    CAS  PubMed  PubMed Central  Google Scholar 

  53. See WL, Miller JP, Squatrito M, Holland E, Resh MD, Koff A (2010) Defective DNA double-strand break repair underlies enhanced tumorigenesis and chromosomal instability in p27-deficient mice with growth factor-induced oligodendrogliomas. Oncogene 29(12):1720–1731

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Schwob E (2004) Flexibility and governance in eukaryotic DNA replication. Curr Opin Microbiol 7(6):680–690

    CAS  PubMed  Google Scholar 

  55. Han JD (2008) Understanding biological functions through molecular networks. Cell Res 18(2):224–237

    CAS  PubMed  Google Scholar 

  56. Kitano H (2002) Looking beyond the details: a rise in system-oriented approaches in genetics and molecular biology. Curr Genet 41(1):1–10

    CAS  PubMed  Google Scholar 

  57. Westerhoff HV, Alberghina L (2005) Systems biology: did we know it all along? In: Alberghina L, Westerhoff HV (eds) Systems biology definitions and perspectives. Springer Berlin

    Google Scholar 

  58. Papin JA, Hunter T, Palsson BO, Subramaniam S (2005) Reconstruction of cellular signaling networks and analysis of their properties. Nat Rev Mol Cell Biol 6(2):99–111

    CAS  PubMed  Google Scholar 

  59. Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402(6761 Suppl):C47–C52

    CAS  PubMed  Google Scholar 

  60. Gavin AC, Bosche M, Krause R, Grandi P, Marzioch M, Bauer A, Schultz J, Rick JM, Michon AM, Cruciat CM, Remor M, Hofert C, Schelder M, Brajenovic M, Ruffner H, Merino A, Klein K, Hudak M, Dickson D, Rudi T, Gnau V, Bauch A, Bastuck S, Huhse B, Leutwein C, Heurtier MA, Copley RR, Edelmann A, Querfurth E, Rybin V, Drewes G, Raida M, Bouwmeester T, Bork P, Seraphin B, Kuster B, Neubauer G, Superti-Furga G (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868):141–147

    CAS  PubMed  Google Scholar 

  61. Gandhi TK, Zhong J, Mathivanan S, Karthick L, Chandrika KN, Mohan SS, Sharma S, Pinkert S, Nagaraju S, Periaswamy B, Mishra G, Nandakumar K, Shen B, Deshpande N, Nayak R, Sarker M, Boeke JD, Parmigiani G, Schultz J, Bader JS, Pandey A (2006) Analysis of the human protein interactome and comparison with yeast, worm and fly interaction datasets. Nat Genet 38(3):285–293

    CAS  PubMed  Google Scholar 

  62. Bertin N, Simonis N, Dupuy D, Cusick ME, Han JD, Fraser HB, Roth FP, Vidal M (2007) Confirmation of organized modularity in the yeast interactome. PLoS Biol 5(6):e153

    PubMed  PubMed Central  Google Scholar 

  63. Han JD, Bertin N, Hao T, Goldberg DS, Berriz GF, Zhang LV, Dupuy D, Walhout AJ, Cusick ME, Roth FP, Vidal M (2004) Evidence for dynamically organized modularity in the yeast protein–protein interaction network. Nature 430(6995):88–93

    CAS  PubMed  Google Scholar 

  64. de Lichtenberg U, Jensen LJ, Brunak S, Bork P (2005) Dynamic complex formation during the yeast cell cycle. Science 307(5710):724–727

    PubMed  Google Scholar 

  65. Csikasz-Nagy A, Battogtokh D, Chen KC, Novak B, Tyson JJ (2006) Analysis of a generic model of eukaryotic cell-cycle regulation. Biophys J 90(12):4361–4379

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Fauré A, Naldi A, Chaouiya C, Thieffry D (2006) Dynamical analysis of a generic Boolean model for the control of the mammalian cell cycle. Bioinformatics 22(14):e124–131

    PubMed  Google Scholar 

  67. Singhania R, Sramkoski RM, Jacobberger JW, Tyson JJ (2011) A hybrid model of mammalian cell cycle regulation. PLoS Comput Biol 7(2):e1001077

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kohn KW (1998) Functional capabilities of molecular network components controlling the mammalian G1/S cell cycle phase transition. Oncogene 16(8):1065–1075

    CAS  PubMed  Google Scholar 

  69. Aguda BD, Tang Y (1999) The kinetic origins of the restriction point in the mammalian cell cycle. Cell Prolif 32(5):321–335

    CAS  PubMed  Google Scholar 

  70. Qu Z, Weiss JN, MacLellan WR (2003) Regulation of the mammalian cell cycle: a model of the G1-to-S transition. Am J Physiol Cell Physiol 284(2):C349-C364

    CAS  PubMed  Google Scholar 

  71. Swat M, Kel A, Herzel H (2004) Bifurcation analysis of the regulatory modules of the mammalian G1/S transition. Bioinformatics 20(10):1506–1511

    CAS  PubMed  Google Scholar 

  72. Novak B, Tyson JJ (2004) A model for restriction point control of the mammalian cell cycle. J Theor Biol 230(4):563–579

    CAS  PubMed  Google Scholar 

  73. Haberichter T, Madge B, Christopher RA, Yoshioka N, Dhiman A, Miller R, Gendelman R, Aksenov SV, Khalil IG, Dowdy SF (2007) A systems biology dynamical model of mammalian G1 cell cycle progression. Mol Syst Biol 3:84

    PubMed  PubMed Central  Google Scholar 

  74. Alfieri R, Barberis M, Chiaradonna F, Gaglio D, Milanesi L, Vanoni M, Klipp E, Alberghina L (2009) Towards a systems biology approach to mammalian cell cycle: modeling the entrance into S phase of quiescent fibroblasts after serum stimulation. BMC Bioinformatics 10 (Suppl 12):S16

    PubMed  PubMed Central  Google Scholar 

  75. Chen KC, Csikasz-Nagy A, Gyorffy B, Val J, Novak B, Tyson JJ (2000) Kinetic analysis of a molecular model of the budding yeast cell cycle. Mol Biol Cell 11(1):369–391

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Chen KC, Calzone L, Csikasz-Nagy A, Cross FR, Novak B, Tyson JJ (2004) Integrative analysis of cell cycle control in budding yeast. Mol Biol Cell 15(8):3841–3862

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Allen NA, Chen KC, Shaffer CA, Tyson JJ, Watson LT (2006) Computer evaluation of network dynamics models with application to cell cycle control in budding yeast. Syst Biol (Stevenage) 153(1):13–21

    CAS  PubMed  Google Scholar 

  78. Barik D, Baumann WT, Paul MR, Novak B, Tyson JJ (2010) A model of yeast cell-cycle regulation based on multisite phosphorylation. Mol Syst Biol 6:405

    PubMed  PubMed Central  Google Scholar 

  79. Li F, Long T, Lu Y, Ouyang Q, Tang C (2004) The yeast cell-cycle network is robustly designed. Proc Natl Acad Sci USA 101(14): 4781–4786

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Irons DJ (2009) Logical analysis of the budding yeast cell cycle. J Theor Biol 257(4):543–559

    CAS  PubMed  Google Scholar 

  81. Fauré A, Naldi A, Lopez F, Chaouiya C, Ciliberto A, Thieffry D (2009) Modular logical modelling of the budding yeast cell cycle. Mol BioSyst 5(12):1787–1796

    PubMed  Google Scholar 

  82. Braunewell S, Bornholdt S (2007) Superstability of the yeast cell-cycle dynamics: ensuring causality in the presence of biochemical stochasticity. J Theor Biol 245(4):638–643

    CAS  PubMed  Google Scholar 

  83. Palmisano A, Mura I, Priami C (2009) From ODES to language-based, executable models of biological systems. Pac Symp Biocomput 14:239–250

    Google Scholar 

  84. Barberis M, Beck C, Amoussouvi A, Schreiber G, Diener C, Herrmann A, Klipp E (2011) Low number of SIC1 mRNA molecules ensures low noise level in cell cycle progression of budding yeast. Mol BioSyst 7(10):2804–2812

    CAS  PubMed  Google Scholar 

  85. Lovrics A, Csikasz-Nagy A, Zsely IG, Zador J, Turanyi T, Novak B (2006) Time scale and dimension analysis of a budding yeast cell cycle model. BMC Bioinform 7:494

    Google Scholar 

  86. Ciliberto A, Lukács A, Tóth A, Tyson JJ, Novák B (2005) Rewiring the exit from mitosis. Cell Cycle 4(8):1107–1112

    CAS  PubMed  Google Scholar 

  87. Queralt E, Lehane C, Novak B, Uhlmann F (2006) Downregulation of PP2A(Cdc55) phosphatase by separase initiates mitotic exit in budding yeast. Cell 125(4):719–732

    CAS  PubMed  Google Scholar 

  88. Tóth A, Queralt E, Uhlmann F, Novák B (2007) Mitotic exit in two dimensions. J Theor Biol 248(3):560–573

    PubMed  Google Scholar 

  89. Vinod PK, Freire P, Rattani A, Ciliberto A, Uhlmann F, Novak B (2011) Computational modelling of mitotic exit in budding yeast: the role of separase and Cdc14 endocycles. J R Soc Interface 8(61):1128–1141

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Ball DA, Ahn TH, Wang P, Chen KC, Cao Y, Tyson JJ, Peccoud J, Baumann WT (2011) Stochastic exit from mitosis in budding yeast: model predictions and experimental observations. Cell Cycle 10(6):999–1009

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Alarcón T, Tindall MJ (2007) Modelling cell growth and its modulation of the G1/S transition. Bull Math Biol 69(1):197–214

    PubMed  Google Scholar 

  92. Barberis M, Klipp E, Vanoni M, Alberghina L (2007) Cell size at S phase initiation: an emergent property of the G1/S network. PLoS Comput Biol 3(4):e64

    PubMed  PubMed Central  Google Scholar 

  93. Bruggeman FJ, Westerhoff HV (2007) The nature of systems biology. Trends Microbiol 15(1):45–50

    CAS  PubMed  Google Scholar 

  94. Barberis M, De Gioia L, Ruzzene M, Sarno S, Coccetti P, Fantucci P, Vanoni M, Alberghina L (2005) The yeast cyclindependent kinase inhibitor Sic1 and mammalian p27Kip1 are functional homologues with a structurally conserved inhibitory domain. Biochem J 387(Pt 3):639–647

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Barberis M, Pagano MA, Gioia LD, Marin O, Vanoni M, Pinna LA, Alberghina L (2005) CK2 regulates in vitro the activity of the yeast cyclin-dependent kinase inhibitor Sic1. Biochem Biophys Res Commun 336(4):1040–1048

    CAS  PubMed  Google Scholar 

  96. Barberis M, Klipp E (2007) Insights into the network controlling the G1/S transition in budding yeast. Genome Inform 18:85–99

    CAS  PubMed  Google Scholar 

  97. Barberis M, Linke C, Adrover MA, Lehrach H, Posas F, Krobitsch S, Klipp E (2011) Sic1 plays a role in timing and oscillatory behaviour of B-type cyclins. Biotechnol Adv, doi:10.1016/j.biotechadv.2011.09.004

    Article  PubMed  Google Scholar 

  98. Archambault V, Li CX, Tackett AJ, Wasch R, Chait BT, Rout MP, Cross FR (2003) Genetic and biochemical evaluation of the importance of Cdc6 in regulating mitotic exit. Mol Biol Cell 14(11):4592–4604

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Coccetti P, Rossi RL, Sternieri F, Porro D, Russo GL, di Fonzo A, Magni F, Vanoni M, Alberghina L (2004) Mutations of the CK2 phosphorylation site of Sic1 affect cell size and S-Cdk kinase activity in Saccharomyces cerevisiae. Mol Microbiol 51(2):447–460

    CAS  PubMed  Google Scholar 

  100. Cross FR, Schroeder L, Bean JM (2007) Phosphorylation of the Sic1 inhibitor of B-type cyclins in Saccharomyces cerevisiaeis not essential but contributes to cell cycle robustness. Genetics 176(3):1541–1555

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Aloy P, Russell RB (2006) Structural systems biology: modelling protein interactions. Nat Rev Mol Cell Biol 7(3):188–197

    CAS  PubMed  Google Scholar 

  102. Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, Vidal M (2005) Towards a proteome-scale map of the human protein–protein interaction network. Nature 437(7062):1173–1178

    CAS  PubMed  Google Scholar 

  103. Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toksöz E, Droege A, Krobitsch S, Korn B, Birchmeier W, Lehrach H, Wanker EE (2005) A human protein–protein interaction network: a resource for annotating the proteome. Cell 122(6):957–968

    CAS  PubMed  Google Scholar 

  104. Uetz P, Giot L, Cagney G, Mansfield TA, Judson RS, Knight JR, Lockshon D, Narayan V, Srinivasan M, Pochart P, Qureshi-Emili A, Li Y, Godwin B, Conover D, Kalbfleisch T, Vijayadamodar G, Yang M, Johnston M, Fields S, Rothberg JM (2000) A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403(6770): 623–627

    CAS  PubMed  Google Scholar 

  105. Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA 98(8): 4569–4574

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Yu H, Braun P, Yildirim MA, Lemmens I, Venkatesan K, Sahalie J, Hirozane-Kishikawa T, Gebreab F, Li N, Simonis N, Hao T, Rual JF, Dricot A, Vazquez A, Murray RR, Simon C, Tardivo L, Tam S, Svrzikapa N, Fan C, de Smet AS, Motyl A, Hudson ME, Park J, Xin X, Cusick ME, Moore T, Boone C, Snyder M, Roth FP, Barabási AL, Tavernier J, Hill DE, Vidal M (2008) High-quality binary protein interaction map of the yeast interactome network. Science 322(5898):104–110

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Aloy P, Böttcher B, Ceulemans H, Leutwein C, Mellwig C, Fischer S, Gavin AC, Bork P, Superti-Furga G, Serrano L, Russell RB (2004) Structure-based assembly of protein complexes in yeast. Science 303(5666):2026–2029

    CAS  PubMed  Google Scholar 

  108. Aloy P, Pichaud M, Russell RB (2005) Protein complexes: structure prediction challenges for the 21st century. Curr Opin Struct Biol 15(1):15–22

    CAS  PubMed  Google Scholar 

  109. Aloy P, Russell RB (2004) Ten thousand interactions for the molecular biologist. Nat Biotechnol 22(10):1317–1321

    CAS  PubMed  Google Scholar 

  110. Aloy P, Ceulemans H, Stark A, Russell RB (2003) The relationship between sequence and interaction divergence in proteins. J Mol Biol 332(5):989–998

    CAS  PubMed  Google Scholar 

  111. Aloy P, Russell RB (2002) Interrogating protein interaction networks through structural biology. Proc Natl Acad Sci USA 99(9):5896–5901

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Lu L, Lu H, Skolnick J (2002) MULTIPROSPECTOR: an algorithm for the prediction of protein–protein interactions by multimeric threading. Proteins 49(3):350–364

    CAS  PubMed  Google Scholar 

  113. Lu L, Arakaki AK, Lu H, Skolnick J (2003) Multimeric threading-based prediction of protein–protein interactions on a genomic scale: application to the Saccharomyces cerevisiaeproteome. Genome Res 13(6A):1146–1154

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Mosca R, Pons C, Fernández-Recio J, Aloy P (2009) Pushing structural information into the yeast interactome by high-throughput protein docking experiments. PLoS Comput Biol 5(8):e1000490

    PubMed  PubMed Central  Google Scholar 

  115. Sánchez-Díaz A, González I, Arellano M, Moreno S (1998) The Cdk inhibitors p25rum1 and p40SIC1 are functional homologues that play similar roles in the regulation of the cell cycle in fission and budding yeast. J Cell Sci 111(Pt 6):843–851

    PubMed  Google Scholar 

  116. Peter M, Herskovitz I (1994) Joining the complex: cyclin-dependent kinase inhibitory proteins and the cell cycle. Cell 79(2):181–184

    CAS  PubMed  Google Scholar 

  117. Hodge A, Mendenhall M (1999) The cyclin-dependent kinase inhibitory domain of the yeast Sic1 protein is contained within the C-terminal 70 amino acids. Mol Gen Genet 262(1):55–64

    CAS  PubMed  Google Scholar 

  118. Russo AA, Jeffrey PD, Patten AK, Massagué J, Pavletich NP (1996) Crystal structure of the p27Kip1 cyclin-dependent-kinase inhibitor bound to the cyclin A-Cdk2 complex. Nature 382(6589):325–331

    CAS  PubMed  Google Scholar 

  119. Barberis M (2000) Phenotypic analysis of Ser201/Glu and Ser201/Ala mutants in Saccharomyces cerevisiaeand their functional interpretation on the basis of a three-dimensional model of Clb5/Cdc28/p40Sic1 complex built by homology. Dissertation, University of Milano-Bicocca, Milan

    Google Scholar 

  120. Heiner AP, Berendsen HJ, van Gunsteren WF (1992) MD simulation of subtilisin BPN’ in a crystal environment. Proteins 14(4):451–464

    CAS  PubMed  Google Scholar 

  121. Rost B, Sander C (1993) Prediction of protein secondary structure at better than 70% accuracy. J Mol Biol 232(2):584–599

    CAS  PubMed  Google Scholar 

  122. Rost B, Sander C, Schneider R (1994) PHD – an automatic mail server for protein secondary structure prediction. Comput Appl Biosci 10(1):53–60

    CAS  PubMed  Google Scholar 

  123. Rost B (1996) PHD: predicting one-dimensional protein structure by profile-based neural networks. Methods Enzymol 266:525–539

    CAS  PubMed  Google Scholar 

  124. Dauber-Osguthorpe P, Roberts VA, Osguthorpe DJ, Wolff J, Genest M, Hagler AT (1988) Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase-trimethoprim, a drug-receptor system. Proteins 4(1): 31–47

    CAS  PubMed  Google Scholar 

  125. Cross FR, Jacobson MD (2000) Conservation and function of a potential substrate-binding domain in the yeast Clb5 B-type cyclin. Mol Cell Biol 20(13):4782–4790

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Schulman BA, Lindstrom DL, Harlow E (1998) Substrate recruitment to cyclin-dependent kinase 2 by a multipurpose docking site on cyclin A. Proc Natl Acad Sci USA 95(18): 10453–10458

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Morgan DO (1996) Under arrest at atomic resolution. Nature 382(6589):295–296

    CAS  PubMed  Google Scholar 

  128. Spolar RS, Record MT Jr (1994) Coupling of local folding to site-specific binding of proteins to DNA. Science 263(5148):777–784

    CAS  PubMed  Google Scholar 

  129. Malmqvist M (1999) BIACORE: an affinity biosensor system for characterization of biomolecular interactions. Biochem Soc Trans 27(2):335–340

    CAS  PubMed  Google Scholar 

  130. Lacy ER, Wang Y, Post J, Nourse A, Webb W, Mapelli M, Musacchio A, Siuzdak G, Kriwacki RW (2005) Molecular basis for the specificity of p27 toward cyclin-dependent kinases that regulate cell division. J Mol Biol 349(4):764–773

    CAS  PubMed  Google Scholar 

  131. Lacy ER, Filippov I, Lewis WS, Otieno S, Xiao L, Weiss S, Hengst L, Kriwacki RW (2004) p27 binds cyclin-CDK complexes through a sequential mechanism involving binding-induced protein folding. Nat Struct Mol Biol 11(4):358–364

    CAS  PubMed  Google Scholar 

  132. Besson A, Hwang HC, Cicero S, Donovan SL, Gurian-West M, Johnson D, Clurman BE, Dyer MA, Roberts JM (2007) Discovery of an oncogenic activity in p27Kip1 that causes stem cell expansion and a multiple tumor phenotype. Genes Dev 21(14):1731–1746

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Johnsson B, Löfås S, Lindquist G (1991) Immobilization of proteins to a carboxymethyldextran-modified gold surface for biospecific interaction analysis in surface plasmon resonance sensors. Anal Biochem 198(2):268–277

    CAS  PubMed  Google Scholar 

  134. Bienkiewicz EA, Adkins JN, Lumb KJ (2002) Functional consequences of preorganized helical structure in the intrinsically disordered cell-cycle inhibitor p27(Kip1). Biochemistry 41(3):752–759

    CAS  PubMed  Google Scholar 

  135. Galea CA, Wang Y, Sivakolundu SG, Kriwacki RW (2008) Regulation of cell division by intrinsically unstructured proteins: intrinsic flexibility, modularity, and signaling conduits. Biochemistry 47(29):7598–7609

    CAS  PubMed  Google Scholar 

  136. Hengst L, Dulic V, Slingerland JM, Lees E, Reed SI (1994) A cell cycle-regulated inhibitor of cyclin-dependent kinases. Proc Natl Acad Sci USA 91(12):5291–5295

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Bowman P, Galea CA, Lacy E, Kriwacki RW (2006) Thermodynamic characterization of interactions between p27(Kip1) and activated and non-activated Cdk2: intrinsically unstructured proteins as thermodynamic tethers. Biochim Biophys Acta 1764(2):182–189

    CAS  PubMed  Google Scholar 

  138. Sivakolundu SG, Bashford D, Kriwacki RW (2005) Disordered p27Kip1 exhibits intrinsic structure resembling the Cdk2/cyclin A-bound conformation. J Mol Biol 353(5):1118–1128

    CAS  PubMed  Google Scholar 

  139. Galea CA, Nourse A, Wang Y, Sivakolundu SG, Heller WT, Kriwacki RW (2008) Role of intrinsic flexibility in signal transduction mediated by the cell cycle regulator, p27 Kip1. J Mol Biol 376(3):827–838

    CAS  PubMed  Google Scholar 

  140. Xie H, Vucetic S, Iakoucheva LM, Oldfield CJ, Dunker AK, Uversky VN, Obradovic Z (2007) Functional anthology of intrinsic disorder. 1. Biological processes and functions of proteins with long disordered regions. J Proteome Res 6(5):1882–1898

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Vucetic S, Xie H, Iakoucheva LM, Oldfield CJ, Dunker AK, Obradovic Z, Uversky VN (2007) Functional anthology of intrinsic disorder. 2. Cellular components, domains, technical terms, developmental processes, and coding sequence diversities correlated with long disordered regions. J Proteome Res 6(5):1899–1916

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Iakoucheva LM, Brown CJ, Lawson JD, Obradović Z, Dunker AK Intrinsic disorder in cell-signaling and cancer-associated proteins. J Mol Biol 323(3):573–584

    Google Scholar 

  143. Bloom J, Pagano M (2003) Deregulated degradation of the cdk inhibitor p27 and malignant transformation. Semin Cancer Biol 13(1):41–47

    CAS  PubMed  Google Scholar 

  144. Chu IM, Hengst L, Slingerland JM (2008) The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy. Nat Rev Cancer 8(4):253–267

    CAS  PubMed  Google Scholar 

  145. Lee J, Kim SS (2009) The function of p27 KIP1 during tumor development. Exp Mol Med 41(11):765–771

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Blagosklonny MV (2002) Are p27 and p21 cytoplasmic oncoproteins? Cell Cycle 1(6): 391–393

    CAS  PubMed  Google Scholar 

  147. Sicinski P, Zacharek S, Kim C (2007) Duality of p27Kip1 function in tumorigenesis. Genes Dev 21(14):1731–1746

    Google Scholar 

  148. Chu I, Sun J, Arnaout A, Kahn H, Hanna W, Narod S, Sun P, Tan CK, Hengst L, Slingerland J p27 phosphorylation by Src regulates inhibition of cyclin E-Cdk2. Cell 128(2): 281–294

    Google Scholar 

  149. Grimmler M, Wang Y, Mund T, Cilensek Z, Keidel EM, Waddell MB, Jäkel H, Kullmann M, Kriwacki RW, Hengst L (2007) Cdk-inhibitory activity and stability of p27Kip1 are directly regulated by oncogenic tyrosine kinases. Cell 128(2):269–280

    CAS  PubMed  Google Scholar 

  150. Hidaka T, Hama S, Shrestha P, Saito T, Kajiwara Y, Yamasaki F, Sugiyama K, Kurisu K (2009) The combination of low cytoplasmic and high nuclear expression of p27 predicts a better prognosis in high-grade astrocytoma. Anticancer Res 29(2):597–603

    PubMed  Google Scholar 

  151. Mittag T, Orlicky S, Choy WY, Tang X, Lin H, Sicheri F, Kay LE, Tyers M, Forman-Kay JD (2008) Dynamic equilibrium engagement of a polyvalent ligand with a single-site receptor. Proc Natl Acad Sci USA 105(46):17772–17777

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Mittag T, Marsh J, Grishaev A, Orlicky S, Lin H, Sicheri F, Tyers M, Forman-Kay JD (2010) Structure/function implications in a dynamic complex of the intrinsically disordered Sic1 with the Cdc4 subunit of an SCF ubiquitin ligase. Structure 18(4):494–506

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Brocca S, Samalíková M, Uversky VN, Lotti M, Vanoni M, Alberghina L, Grandori R (2009) Order propensity of an intrinsically disordered protein, the cyclin-dependent-kinase inhibitor Sic1. Proteins 76(3):731–746

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Brocca S, Testa L, Samalikova M, Grandori R, Lotti M (2011) Defining structural domains of an intrinsically disordered protein: Sic1, the cyclin-dependent kinase inhibitor of Saccharomyces cerevisiae. Mol Biotechnol 47(1):34–42

    CAS  PubMed  Google Scholar 

  155. Testa L, Brocca S, Samalikova M, Santambrogio C, Alberghina L, Grandori R (2011) Electrospray ionization-mass spectrometry conformational analysis of isolated domains of an intrinsically disordered protein. Biotechnol J 6(1):96–100

    CAS  PubMed  Google Scholar 

  156. Brocca S, Testa L, Sobott F, Šamalikova M, Natalello A, Papaleo E, Lotti M, De Gioia L, Doglia SM, Alberghina L, Grandori R (2011) Compact conformations of an intrinsically disordered protein: the kinase-inhibitor domain of Sic1. Biophys J 100(9):2243–2252

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Iakoucheva LM, Radivojac P, Brown CJ, O’Connor TR, Sikes JG, Obradovic Z, Dunker AK (2004) The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res 32(3):1037–1049

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Escote X, Zapater M, Clotet J, Posas F (2004) Hog1 mediates cell-cycle arrest in G1 phase by the dual targeting of Sic1. Nat Cell Biol 6(10):997–1002

    CAS  PubMed  Google Scholar 

  159. Zapater M, Clotet J, Escoté X, Posas F (2005) Control of cell cycle progression by the stress-activated Hog1 MAPK. Cell Cycle 4(1):6–7

    CAS  PubMed  Google Scholar 

  160. Bjornsti MA, Houghton PJ (2004) The TOR pathway: a target for cancer therapy. Nat Rev Cancer 4(5):335–348

    CAS  PubMed  Google Scholar 

  161. Zinzalla V, Graziola M, Mastriani A, Vanoni M, Alberghin L (2007) Rapamycin-mediated G1 arrest involves regulation of the Cdk inhibitor Sic1 in Saccharomyces cerevisiae. Mol Microbiol 63(5):1482–1494

    CAS  PubMed  Google Scholar 

  162. Nishizawa M, Kawasumi M, Fujino M, Toh-e A (1998) Phosphorylation of Sic1, a cyclin-dependent kinase (Cdk) inhibitor, by Cdk including Pho85 kinase is required for its prompt degradation. Mol Biol Cell 9(9):2393–2405

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Sedgwick C, Rawluk M, Decesare J, Raithatha S, Wohlschlegel J, Semchuk P, Ellison M, Yates J 3rd, Stuart D (2006) Saccharomyces cerevisiaeIme2 phosphorylates Sic1 at multiple PXS/T sites but is insufficient to trigger Sic1 degradation. Biochem J 399(1):151–160

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Meggio F, Pinna LA (2003) One-thousand-and-one substrates of protein kinase CK2? FASEB J 17(3):349–368

    CAS  PubMed  Google Scholar 

  165. Tapia JC, Bolanos-Garcia VM, Sayed M, Allende CC, Allende JE (2004) Cell cycle regulatory protein p27KIP1 is a substrate and interacts with the protein kinase CK2. J Cell Biochem 91(5):865–879

    CAS  PubMed  Google Scholar 

  166. Coccetti P, Zinzalla V, Tedeschi G, Russo GL, Fantinato S, Marin O, Pinna LA, Vanoni M, Alberghina L (2006) Sic1 is phosphorylated by CK2 on Ser201 in budding yeast cells. Biochem Biophys Res Commun 346(3):786–793

    CAS  PubMed  Google Scholar 

  167. Tripodi F, Zinzalla V, Vanoni M, Alberghina L, Coccetti P (2007) In CK2 inactivated cells the cyclin dependent kinase inhibitor Sic1 is involved in cell-cycle arrest before the onset of S phase. Biochem Biophys Res Commun 359(4):921–927

    CAS  PubMed  Google Scholar 

  168. Xu X, Nakano T, Wick S, Dubay M, Brizuela L (1999) Mechanism of Cdk2/Cyclin E inhibition by p27 and p27 phosphorylation. Biochemistry 38(27):8713–8722

    CAS  PubMed  Google Scholar 

  169. Klipp E, Herwig R, Kowald A, Wierling C, Lehrach H (2005) Systems biology in practice. Concepts, implementation and application. Wiley, KGaA

    Google Scholar 

  170. Bracken C, Iakoucheva LM, Romero PR, Dunker AK (2004) Combining prediction, computation and experiment for the characterization of protein disorder. Curr Opin Struct Biol 14(5):570–576

    CAS  PubMed  Google Scholar 

  171. Du JT, Li YM, Ma QF, Qiang W, Zhao YF, Abe H, Kanazawa K, Qin XR, Aoyagi R, Ishizuka Y, Nemoto T, Nakanishi H (2005) Synthesis and conformational properties of phosphopeptides related to the human tau protein. Regul Pept 130(1–2):48–5

    CAS  PubMed  Google Scholar 

  172. Suenaga A, Kiyatkin AB, Hatakeyama M, Futatsugi N, Okimoto N, Hirano Y, Narumi T, Kawai A, Susukita R, Koishi T, Furusawa H, Yasuoka K, Takada N, Ohno Y, Taiji M, Ebisuzaki T, Hoek JB, Konagaya A, Kholodenko BN (2005) Tyr-317 phosphorylation increases Shc structural rigidity and reduces coupling of domain motions remote from the phosphorylation site as revealed by molecular dynamics simulations. J Biol Chem 279(6):4657–4662

    Google Scholar 

  173. Sidorova JM, Breeden LL (2003) Precocious G1/S transitions and genomic instability: the origin connection. Mutat Res 532(1–2):5–19

    CAS  PubMed  Google Scholar 

  174. Kitano H, Funahashi A, Matsuoka Y, Oda K (2005) Using process diagrams for the graphical representation of biological networks. Nat Biotechnol 23(8):961–966

    CAS  PubMed  Google Scholar 

  175. Fitch I, Dahmann C, Surana U, Amon A, Nasmyth K, Goetsch L, Byers B, Futcher B (1992) Characterization of four B-type cyclin genes of the budding yeast Saccharomyces cerevisiae. Mol Biol Cell 3(7):805–818

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Koch C, Nasmyth K (1994) Cell cycle regulated transcription in yeast. Curr Opin Cell Biol 6(3):451–459

    CAS  PubMed  Google Scholar 

  177. Kholodenko BN (2006) Cell-signalling dynamics in time and space. Nat Rev Mol Cell Biol 7(3):165–176

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Bailly E, Reed SI (1999) Functional characterization of rpn3 uncovers a distinct 19S proteasomal subunit requirement for ubiquitin-dependent proteolysis of cell cycle regulatory proteins in budding yeast. Mol Cell Biol 19(10):6872–6890

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Honey S, Schneider BL, Schieltz DM, Yates JR, Futcher B (2001) A novel multiple affinity purification tag and its use in identification of proteins associated with a cyclin–CDK complex. Nucleic Acids Res 29(4):E24

    CAS  PubMed  PubMed Central  Google Scholar 

  180. Archambault V, Chang EJ, Drapkin BJ, Cross FR, Chait BT, Rout MP (2004) Targeted proteomic study of the cyclin–Cdk module. Mol Cell 14(6):699–711

    CAS  PubMed  Google Scholar 

  181. Gavin AC, Aloy P, Grandi P, Krause R, Boesche M, Marzioch M, Rau C, Jensen LJ, Bastuck S, Dümpelfeld B, Edelmann A, Heurtier MA, Hoffman V, Hoefert C, Klein K, Hudak M, Michon AM, Schelder M, Schirle M, Remor M, Rudi T, Hooper S, Bauer A, Bouwmeester T, Casari G, Drewes G, Neubauer G, Rick JM, Kuster B, Bork P, Russell RB, Superti-Furga G (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature 440(7084):631–636

    CAS  PubMed  Google Scholar 

  182. Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J, Pu S, Datta N, Tikuisis AP, Punna T, Peregrín-Alvarez JM, Shales M, Zhang X, Davey M, Robinson MD, Paccanaro A, Bray JE, Sheung A, Beattie B, Richards DP, Canadien V, Lalev A, Mena F, Wong P, Starostine A, Canete MM, Vlasblom J, Wu S, Orsi C, Collins SR, Chandran S, Haw R, Rilstone JJ, Gandi K, Thompson NJ, Musso G, St Onge P, Ghanny S, Lam MH, Butland G, Altaf-Ul AM, Kanaya S, Shilatifard A, O’Shea E, Weissman JS, Ingles CJ, Hughes TR, Parkinson J, Gerstein M, Wodak SJ, Emili A, Greenblatt JF (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440(7084):637–643

    CAS  PubMed  Google Scholar 

  183. Collins SR, Kemmeren P, Zhao XC, Greenblatt JF, Spencer F, Holstege FC, Weissman JS, Krogan NJ (2007) Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae. Mol Cell Proteom 6(3):439–450

    CAS  Google Scholar 

  184. Breitkreutz A, Choi H, Sharom JR, Boucher L, Neduva V, Larsen B, Lin ZY, Breitkreutz BJ, Stark C, Liu G, Ahn J, Dewar-Darch D, Reguly T, Tang X, Almeida R, Qin ZS, Pawson T, Gingras AC, Nesvizhskii AI, Tyers M (2010) A global protein kinase and phosphatase interaction network in yeast. Science 328(5981):1043–1046

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Nair DK, Jose M, Kuner T, Zuschratter W, Hartig R (2006) FRET-FLIM at nanometer spectral resolution from living cells. Opt Express 14(25):12217–12229

    PubMed  Google Scholar 

  186. Rizzo MA, Springer GH, Granada B, Piston DW (2004) An improved cyan fluorescent protein variant useful for FRET. Nat Biotechnol 22(4):445–449

    CAS  PubMed  Google Scholar 

  187. Schreiber G, Barberis M, Scolari S, Klaus C, Herrmann A, Klipp E (2012) Unraveling interactions of cell cycle-regulating proteins Sic1 and B-type cyclins in living yeast cells: a FLIMFRET approach. FASEB J 26, doi:10.1096/fj.11-192518

    Google Scholar 

  188. Ubersax JA, Woodbury EL, Quang PN, Paraz M, Blethrow JD, Shah K, Shokat KM, Morgan DO (2003) Targets of the cyclin-dependent kinase Cdk1. Nature 425(6960):859–864

    CAS  PubMed  Google Scholar 

  189. Stuart D, Wittenberg C (1998) CLB5 and CLB6 are required for premeiotic DNA replication and activation of the meiotic S/M checkpoint. Genes Dev 12(17):2698–2710

    CAS  PubMed  PubMed Central  Google Scholar 

  190. Richardson H, Lew DJ, Henze M, Sugimoto K, Reed SI (1992) Cyclin-B homologs in Saccharomyces cerevisiaefunction in S phase and in G2. Genes Dev 6(11):2021–2034

    CAS  PubMed  Google Scholar 

  191. López-Avilés S, Kapuy O, Novák B, Uhlmann F (2009) Irreversibility of mitotic exit is the consequence of systems-level feedback. Nature 459(7246):592–595

    PubMed  PubMed Central  Google Scholar 

  192. Cross FR, Archambault V, Miller M, Klovstad M (2002) Testing a mathematical model of the yeast cell cycle. Mol Biol Cell 13(1):52–70

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Ghaemmaghami S, Huh WK, Bower K, Howson RW, Belle A, Dephoure N, O’Shea EK, Weissman JS (2003) Global analysis of protein expression in yeast. Nature 425(6959):737–741

    CAS  PubMed  Google Scholar 

  194. Thornton BR, Toczyski DP (2003) Securin and B-cyclin/CDK are the only essential targets of the APC. Nat Cell Biol 5(12):1090–1094

    CAS  PubMed  Google Scholar 

  195. Miller ME, Cross FR (2001) Cyclin specificity: how many wheels do you need on a unicycle? J Cell Sci 114 (Pt 10):1811–1820

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

MB is supported by grants from the European Commission ENFIN (contract number LSHGCT-2005–518254) and UNICELLSYS (contract number HEALTH-2007–201142) to EK. I would like to thank Edda Klipp and Lilia Alberghina for their constant scientific support in the course of my research, and Marco Vanoni, Luca De Gioia, and Francesc Posas for stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Barberis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Barberis, M. (2012). Molecular Systems Biology of Sic1 in Yeast Cell Cycle Regulation Through Multiscale Modeling. In: Goryanin, I.I., Goryachev, A.B. (eds) Advances in Systems Biology. Advances in Experimental Medicine and Biology, vol 736. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7210-1_7

Download citation

Publish with us

Policies and ethics