Skip to main content

Coarse Graining Escherichia coli Chemotaxis: From Multi-flagella Propulsion to Logarithmic Sensing

  • Conference paper
  • First Online:
Advances in Systems Biology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 736))

  • 2835 Accesses

Abstract

Various sensing mechanisms in nature can be described by the Weber–Fechner law stating that the response to varying stimuli is proportional to their relative rather than absolute changes. The chemotaxis of bacteria Escherichia coli is an example where such logarithmic sensing enables sensitivity over large range of concentrations. It has recently been experimentally demonstrated that under certain conditions E. coli indeed respond to relative gradients of ligands. We use numerical simulations of bacteria in food gradients to investigate the limits of validity of the logarithmic behavior. We model the chemotactic signaling pathway reactions, couple them to a multi-flagella model for propelling and take the effects of rotational diffusion into account to accurately reproduce the experimental observations of single cell swimming. Using this simulation scheme we analyze the type of response of bacteria subject to exponential ligand profiles and identify the regimes of absolute gradient sensing, relative gradient sensing, and a rotational diffusion dominated regime. We explore dependance of the swimming speed, average run time and the clockwise (CW) bias on ligand variation and derive a small set of relations that define a coarse grained model for bacterial chemotaxis. Simulations based on this coarse grained model compare well with microfluidic experiments on E. coli diffusion in linear and exponential gradients of aspartate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barkai N, Leibler S (1997) Robustness in simple biochemical networks. Nature 387:913–917

    Article  CAS  PubMed  Google Scholar 

  2. Kollmann M, Løvdok L, Bartholomé K, Timmer J, Sourjik V (2005) Design principles of a bacterial signalling network. Nature 438:504–507

    Article  CAS  PubMed  Google Scholar 

  3. Sourjik V, Berg HC (2002) Receptor sensitivity in bacterial chemotaxis. PNAS 99(1):123–127

    Article  CAS  PubMed  Google Scholar 

  4. Cluzel P, Surette M, Leibler S (2000) An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. Science 287:1652–1655

    Article  CAS  PubMed  Google Scholar 

  5. Bray D (1998) Receptor clustering as a mechanism to control sensitivity. Nature 393:85–88

    Article  CAS  PubMed  Google Scholar 

  6. Alon U, Surette MG, Barkai N, Leibler S (1999) Robustness in bacterial chemotaxis. Nature 397:168–171

    Article  CAS  PubMed  Google Scholar 

  7. Hansen CH, Endres RG, Wingreen NS (2008) Chemotaxis in Escherichia coli: a molecular model for robust precise adaptation. PLOS Comp Biol 4(1):14–27

    Article  CAS  Google Scholar 

  8. Kalinin YV, Jiang LL, Tu Y, Wu M (2009) Logarithmic sensing in Escherichia coli bacterial chemotaxis. Biophys J 96:2439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Matthäus F, Jagodić M, Dobnikar J (2009) E. coli superdiffusion and chemotaxis – search strategy, precision and motility. J Biophys 97(4):946–957

    Article  Google Scholar 

  10. Strong SP, Freedman B, Bialek W, Koberle R (1998) Adaptation and optimal chemotactic strategy for E. coli. Phys Rev E 57(4):4604–4616

    Article  CAS  Google Scholar 

  11. Emonet T, Macal CM, North MJ, Wickersham CE, Cluzel P (2005) Agent Cell: a digital single-cell assay for bacterial chemotaxis. Bioinformatics, 21(11):2714–2721

    Article  CAS  PubMed  Google Scholar 

  12. Bray D, Levin MD, Lipkow K (2007) The chemotactic behavior of computer-based surrogate bacteria. Curr Biol 17(4):R132–R134

    Google Scholar 

  13. Turner L, Ryu WS, Berg HC (2000) Real-time imaging of fluorescent flagellar filaments. J Bacteriol 182(10):2793–2801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Korobkova E, Emonet T, Park H, Cluzel P (2006) Hidden stochastic nature of a single bacterial motor. Phys Rev Lett 96(5):058105

    Article  PubMed  Google Scholar 

  15. Staropoli JF, Alon U (2000) Computerized analysis of chemotaxis at different stages of bacterial growth. Biophys J 78:513–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Berg HC (2003) E. coli in motion. Biol Med Phys Biomed Eng. Springer, New York

    Google Scholar 

  17. Berg HC, Brown DA (1972) Chemotaxis in Escherichia coli analysed by three-dimensional tracking. Nature 239(5374):500–504

    Article  CAS  PubMed  Google Scholar 

  18. Berg HC, Brown DA (1974) Temporal stimulation of chemotaxis in Escherichia coli. Proc Natl Acad Soc USA 71(4):1388

    Article  Google Scholar 

  19. Tu Y, Shimizu TS, Berg HC (2008) Modeling the chemotactic response of Escherichia coli to time-varying stimuli. PNAS, 105(39):14855–14860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Shimizu TS, Tu Y, Berg HC (2010) A modular gradient-sensing network for chemotaxis in Escherichia coli revealed by responses to time-varying stimuli. Mol Sys Biol 6:Art. no. 382

    Google Scholar 

  21. Jiang L, Ouyang Q, Tu Y (2010) Quantitative modeling of Escherichia coli chemotactic motion in environments varying in space and time. PLOS Comp Biol 6(4):e1000735

    Article  Google Scholar 

  22. Vladimirov N, Løvdok L, Lebiedz D, Sourjik V (2008) Dependence of bacterial chemotaxis on gradient shape and adaptation rate. PLOS Comp Biol 4(12):e1000242

    Article  Google Scholar 

  23. Block SM, Segall JE, Berg HC (1982) Impulse responses in bacterial chemotaxis. Cell 31:215

    CAS  PubMed  Google Scholar 

  24. Kafri Y, daSilveira RA (2008) Steady-state chemotaxis in Escherichia coli. Phys Rev Lett 100:Art. no. 238101

    Google Scholar 

  25. de Gennes PG (2004) Chemotaxis; the role of internal delays. Eur Biophys J 33:691–693

    Article  PubMed  Google Scholar 

  26. Ahmed T, Shimizu TS, Stocker R (2010) Bacterial chemotaxis in linear and nonlinear steady microfluidic gradients. Nano Lett 10:3379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Berg HC, Turner L (1990) Chemotaxis of bacteria in glass capillary arrays. Biophys J hbox58:919–930

    Article  CAS  Google Scholar 

  28. Cates ME, Marenduzzo D, Pagonabarraga I, Tailleur J (2010) Arrested phase separation in reproducing bacteria creates a generic route to pattern formation. Proc Natl Acad Sci USA 107:11715–11720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We acknowledge the support of the following funding agencies: the Center for Modeling and Simulation in the Biosciences (BIOMS) of the University of Heidelberg (FM), the German Ministry of Education and Research (grant Nr. 03BOPAL1) (MSM), the Slovenian Research Agency (P1-0055), the European Research Council (COLSTRUCTIION 227758), and the 7th Framework Programme (ITN-COMPLOIDS 234810) (JD, JBK & TC). JD wants to acknowledge the hospitality of the Aspen Center for Physics during the summer workshop programme in August 2010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tine Curk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this paper

Cite this paper

Curk, T., Matthäus, F., Brill-Karniely, Y., Dobnikar, J. (2012). Coarse Graining Escherichia coli Chemotaxis: From Multi-flagella Propulsion to Logarithmic Sensing. In: Goryanin, I.I., Goryachev, A.B. (eds) Advances in Systems Biology. Advances in Experimental Medicine and Biology, vol 736. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7210-1_22

Download citation

Publish with us

Policies and ethics