Skip to main content

Cardiorenal Protection in Diabetes Mellitus

  • Chapter
  • First Online:
Molecular Defects in Cardiovascular Disease

Abstract

Diabetic cardiomyopathy is a major complication of diabetes that is independent of high blood pressure or atherosclerosis. In addition to diastolic dysfunction, the diabetic heart is more susceptible to oxidative stress. Hyperglycemia (HG) dominates the pathophysiology and clinical course of type 1 and type 2 Diabetes. An important question concerns the signals used by high concentrations of extracellular glucose to alter the biochemical and mechanical properties of cardiac muscle cells. Recruitment of the Protein Kinase C (PKC) family of serine–threonine kinases is an integral component of the signaling events that direct the cardiac phenotype expressed during postnatal cardiac development and in response to pathological stimuli. We have described that genetically engineered mice with cardiac-specific expression of an isozyme-specific PKC-ε translocation activator exhibit protection from hyperglycemia-induced apoptosis and LV dysfunction. The ψε-RACK peptide facilitated the intracellular trafficking of PKC-ε, and thereby prevented hyperglycemia-mediated decreases in immunoreactivity in both membrane and mitochondrial compartments. A unifying hypothesis has been proposed for the development of diabetic complications, based on the overproduction of Reactive Oxygen Species (ROS). The adapter protein p66Shc A is a part of a signal transduction pathway and may be a key component of the cell signal response to oxidative stress contributing to the lifespan in mammals. p66ShcA functions as a potentially harmful regulatory gene, which is required for the generation of HG-induced oxidative stress and apoptosis. At high ambient glucose (HG), p66ShcA-deficient cells exhibit resistance to HG-induced ROS generation and attenuation in the amplitude of the kinetic curves for intracellular ROS metabolism, indicative of the pivotal role of WTp66ShcA in the generation of HG oxidant stress. Inhibition of WTp66ShcA function shuts down HG-induced ROS production in cytosolic and mitochondrial compartments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The Diabetes Control and Complications Trial Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med. 1993;329:977–86.

    Article  Google Scholar 

  2. Rodrigues B, Cam MC, McNeill JH. Metabolic disturbances in diabetic cardiomyopathy. Mol Cell Biochem. 1998;180:53–7.

    Article  PubMed  CAS  Google Scholar 

  3. Rodrigues B, McNeill JH. The diabetic heart: metabolic causes for the development of a cardiomyopathy. Cardiovasc Res. 1992;26:913–22.

    Article  PubMed  CAS  Google Scholar 

  4. Bell DS. Diabetic cardiomyopathy. A unique entity or a complication of coronary artery disease? Diabetes Care. 1995;18:708–14.

    Article  PubMed  CAS  Google Scholar 

  5. Rybin VO, Steinberg SF. Protein kinase C isoform expression and regulation in the developing rat heart. Circ Res. 1994;74:299–309.

    PubMed  CAS  Google Scholar 

  6. Gu X, Bishop SP. Increased protein kinase C and isozyme redistribution in pressure-overload cardiac hypertrophy in the rat. Circ Res. 1994;75:926–31.

    PubMed  CAS  Google Scholar 

  7. Zou Y, Komuro I, Yamazaki T, et al. Protein kinase C, but not tyrosine kinases or Ras, plays a critical role in angiotensin II-induced activation of Raf-1 kinase and extracellular signal-regulated protein kinases in cardiac myocytes. J Biol Chem. 1996;271:33592–7.

    Article  PubMed  CAS  Google Scholar 

  8. Qiu Y, Ping P, Tang XL, et al. Direct evidence that protein kinase C plays an essential role in the development of late preconditioning against myocardial stunning in conscious rabbits and that epsilon is the isoform involved. J Clin Invest. 1998;101:2182–98.

    Article  PubMed  CAS  Google Scholar 

  9. Goto M, Cohen MV, Downey JM. The role of protein kinase C in ischemic preconditioning. Ann N Y Acad Sci. 1996;793:177–90.

    Article  PubMed  CAS  Google Scholar 

  10. Steinberg SF, Goldberg M, Rybin VO. Protein kinase C isoform diversity in the heart. J Mol Cell Cardiol. 1995;27:141–53.

    Article  PubMed  CAS  Google Scholar 

  11. Takeishi Y, Jalili T, Ball NA, et al. Responses of cardiac protein kinase C isoforms to distinct pathological stimuli are differentially regulated. Circ Res. 1999;85:264–71.

    PubMed  CAS  Google Scholar 

  12. Malhotra A, Kang BP, Cheung S, et al. Angiotensin II promotes glucose-induced activation of cardiac protein kinase C isozymes and phosphorylation of troponin I. Diabetes. 2001;50:1918–26.

    Article  PubMed  CAS  Google Scholar 

  13. Malhotra A, Begley R, Kang BP, et al. PKC-{epsilon}-dependent survival signals in diabetic hearts. Am J Physiol Heart Circ Physiol. 2005;289:H1343–50.

    Article  PubMed  CAS  Google Scholar 

  14. Mochly-Rosen D, Wu G, Hahn H, et al. Cardiotrophic effects of protein kinase C epsilon: analysis by in vivo modulation of PKCepsilon translocation. Circ Res. 2000;86:1173–9.

    PubMed  CAS  Google Scholar 

  15. Wu G, Toyokawa T, Hahn H, et al. Epsilon protein kinase C in pathological myocardial hypertrophy. Analysis by combined transgenic expression of translocation modifiers and Galphaq. J Biol Chem. 2000;275:29927–30.

    Article  PubMed  CAS  Google Scholar 

  16. Wild S, Roglic G, Green A, et al. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27:1047–53.

    Article  PubMed  Google Scholar 

  17. Baines CP, Zhang J, Wang GW, et al. Mitochondrial PKCepsilon and MAPK form signaling modules in the murine heart: enhanced mitochondrial PKCepsilon-MAPK interactions and differential MAPK activation in PKCepsilon-induced cardioprotection. Circ Res. 2002;90:390–7.

    Article  PubMed  CAS  Google Scholar 

  18. Baines CP, Song CX, Zheng YT, et al. Protein kinase Cepsilon interacts with and inhibits the permeability transition pore in cardiac mitochondria. Circ Res. 2003;92:873–80.

    Article  PubMed  CAS  Google Scholar 

  19. Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature. 2000;404:787–90.

    Article  PubMed  CAS  Google Scholar 

  20. Haunstetter A, Izumo S. Apoptosis: basic mechanisms and implications for cardiovascular disease. Circ Res. 1998;82:1111–29.

    PubMed  CAS  Google Scholar 

  21. Green DR, Chipuk JE. Apoptosis: Stabbed in the BAX. Nature. 2008;455:1047–9.

    Article  PubMed  CAS  Google Scholar 

  22. Heidkamp MC, Bayer AL, Martin JL, et al. Differential activation of mitogen-activated protein kinase cascades and apoptosis by protein kinase C epsilon and delta in neonatal rat ventricular myocytes. Circ Res. 2001;89:882–90.

    Article  PubMed  CAS  Google Scholar 

  23. Harada H, Becknell B, Wilm M, et al. Phosphorylation and inactivation of BAD by mitochondria-anchored protein kinase A. Mol Cell. 1999;3:413–22.

    Article  PubMed  CAS  Google Scholar 

  24. Nicholson DW, Thornberry NA. Apoptosis. Life and death decisions. Science. 2003;299:214–5.

    Article  PubMed  CAS  Google Scholar 

  25. van Rooij E, Sutherland LB, Qi X, et al. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science. 2007;316:575–9.

    Article  PubMed  Google Scholar 

  26. Rane S, He M, Sayed D, et al. Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circ Res. 2009;104:879–86.

    Article  PubMed  CAS  Google Scholar 

  27. Graiani G, Lagrasta C, Migliaccio E, et al. Genetic deletion of the p66Shc adaptor protein protects from angiotensin II-induced myocardial damage. Hypertension. 2005;46:433–40.

    Article  PubMed  CAS  Google Scholar 

  28. Migliaccio E, Giorgio M, Mele S, et al. The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature. 1999;402:309–13.

    Article  PubMed  CAS  Google Scholar 

  29. Giorgio M, Migliaccio E, Orsini F, et al. Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell. 2005;122:221–33.

    Article  PubMed  CAS  Google Scholar 

  30. Orsini F, Migliaccio E, Moroni M, et al. The life span determinant p66Shc localizes to mitochondria where it associates with mitochondrial heat shock protein 70 and regulates trans-membrane potential. J Biol Chem. 2004;279:25689–95.

    Article  PubMed  CAS  Google Scholar 

  31. Malhotra A, Vashistha H, Yadav VS, et al. Inhibition of p66ShcA redox activity in cardiac muscle cells attenuates hyperglycemia-induced oxidative stress and apoptosis. Am J Physiol Heart Circ Physiol. 2009;296:H380–8.

    Article  PubMed  CAS  Google Scholar 

  32. Pinton P, Rimessi A, Marchi S, et al. Protein kinase C beta and prolyl isomerase 1 regulate mitochondrial effects of the life-span determinant p66Shc. Science. 2007;315:659–63.

    Article  PubMed  CAS  Google Scholar 

  33. Kakoki M, Kizer CM, Yi X, et al. Senescence-associated phenotypes in Akita diabetic mice are enhanced by absence of bradykinin B2 receptors. J Clin Invest. 2006;116:1302–9.

    Article  PubMed  CAS  Google Scholar 

  34. Kakoki M, Takahashi N, Jennette JC, et al. Diabetic nephropathy is markedly enhanced in mice lacking the bradykinin B2 receptor. Proc Natl Acad Sci USA. 2004;101:13302–5.

    Article  PubMed  CAS  Google Scholar 

  35. Rota M, LeCapitaine N, Hosoda T, et al. Diabetes promotes cardiac stem cell aging and heart failure, which are prevented by deletion of the p66shc gene. Circ Res. 2006;99:42–52.

    Article  PubMed  CAS  Google Scholar 

  36. Santiago Y, Chan E, Liu PQ, et al. Targeted gene knockout in mammalian cells by using engineered zinc-finger nucleases. Proc Natl Acad Sci USA. 2008;105:5809–14.

    Article  PubMed  CAS  Google Scholar 

  37. Nemoto S, Fergusson MM, Finkel T. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science. 2004;306:2105–8.

    Article  PubMed  CAS  Google Scholar 

  38. Nemoto S, Finkel T. Redox regulation of forkhead proteins through a p66shc-dependent signaling pathway. Science. 2002;295:2450–2.

    Article  PubMed  CAS  Google Scholar 

  39. You H, Jang Y, You-Ten AI, Okada H, et al. p53-dependent inhibition of FKHRL1 in response to DNA damage through protein kinase SGK1. Proc Natl Acad Sci USA. 2004;101:14057–62.

    Article  PubMed  CAS  Google Scholar 

  40. Chintapalli J, Yang S, Opawumi D, et al. Inhibition of wild-type p66ShcA in mesangial cells prevents glycooxidant-dependent FOXO3a regulation and promotes the survival phenotype. Am J Physiol Renal Physiol. 2007;292:F523–30.

    Article  PubMed  CAS  Google Scholar 

  41. Hua H, Munk S, Goldberg H, et al. High glucose-suppressed endothelin-1 Ca2+ signaling via NADPH oxidase and diacylglycerol-sensitive protein kinase C isozymes in mesangial cells. J Biol Chem. 2003;278:33951–62.

    Article  PubMed  CAS  Google Scholar 

  42. Rajagopalan S, Kurz S, Munzel T, et al. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. J Clin Invest. 1996;97:1916–23.

    Article  PubMed  CAS  Google Scholar 

  43. Campisi J. Cellular senescence and apoptosis: how cellular responses might influence aging phenotypes. Exp Gerontol. 2003;38:5–11.

    Article  PubMed  CAS  Google Scholar 

  44. Hasty P, Campisi J, Hoeijmakers J, et al. Aging and genome maintenance: lessons from the mouse? Science. 2003;299:1355–9.

    Article  PubMed  CAS  Google Scholar 

  45. Akao M, Ohler A, O’Rourke B, et al. Mitochondrial ATP-sensitive potassium channels inhibit apoptosis induced by oxidative stress in cardiac cells. Circ Res. 2001;88:1267–75.

    Article  PubMed  CAS  Google Scholar 

  46. von Harsdorf R, Li PF, Dietz R. Signaling pathways in reactive oxygen species-induced cardiomyocyte apoptosis. Circulation. 1999;99:2934–41.

    Google Scholar 

  47. Craven PA, Melhem MF, Phillips SL, et al. Overexpression of Cu2+/Zn2+ superoxide dismutase protects against early diabetic glomerular injury in transgenic mice. Diabetes. 2001;50:2114–25.

    Article  PubMed  CAS  Google Scholar 

  48. Jaimes EA, Galceran JM, Raij L. Angiotensin II induces superoxide anion production by mesangial cells. Kidney Int. 1998;54:775–84.

    Article  PubMed  CAS  Google Scholar 

  49. Green DR, Reed JC. Mitochondria and apoptosis. Science. 1998;281:1309–12.

    Article  PubMed  CAS  Google Scholar 

  50. Gottlieb RA, Burleson KO, Kloner RA, et al. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest. 1994;94:1621–8.

    Article  PubMed  CAS  Google Scholar 

  51. Zweier JL, Flaherty JT, Weisfeldt ML. Direct measurement of free radical generation following reperfusion of ischemic myocardium. Proc Natl Acad Sci USA. 1987;84:1404–7.

    Article  PubMed  CAS  Google Scholar 

  52. Osterby R, Schmitz A, Nyberg G, et al. Renal structural changes in insulin-dependent diabetic patients with albuminuria. Comparison of cases with onset of albuminuria after short or long duration. APMIS. 1998;106:361–70.

    Article  PubMed  CAS  Google Scholar 

  53. Sandau K, Pfeilschifter J, Brune B. Nitric oxide and superoxide induced p53 and Bax accumulation during mesangial cell apoptosis. Kidney Int. 1997;52:378–86.

    Article  PubMed  CAS  Google Scholar 

  54. Sharma P, Reddy K, Franki N, et al. Native and ­oxidized low density lipoproteins modulate mesangial cell apoptosis. Kidney Int. 1996;50:1604–11.

    Article  PubMed  CAS  Google Scholar 

  55. Singhal PC, Franki N, Kumari S, et al. Extracellular matrix modulates mesangial cell apoptosis and mRNA expression of cathepsin-B and tissue transglutaminase. J Cell Biochem. 1998;68:22–30.

    Article  PubMed  CAS  Google Scholar 

  56. Singhal PC, Gibbons N, Franki N, et al. Simulated glomerular hypertension promotes mesangial cell apoptosis and expression of cathepsin-B and SGP-2. J Investig Med. 1998;46:42–50.

    PubMed  CAS  Google Scholar 

  57. Baker AJ, Mooney A, Hughes J, et al. Mesangial cell apoptosis: the major mechanism for resolution of glomerular hypercellularity in experimental mesangial proliferative nephritis. J Clin Invest. 1994;94:2105–16.

    Article  PubMed  CAS  Google Scholar 

  58. Mooney A, Jobson T, Bacon R, et al. Cytokines promote glomerular mesangial cell survival in vitro by stimulus-dependent inhibition of apoptosis. J Immunol. 1997;159:3949–60.

    PubMed  CAS  Google Scholar 

  59. Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol. 2000;18:621–63.

    Article  PubMed  CAS  Google Scholar 

  60. Kirch HC, Flaswinkel S, Rumpf H, et al. Expression of human p53 requires synergistic activation of transcription from the p53 promoter by AP-1, NF-kappaB and Myc/Max. Oncogene. 1999;18:2728–38.

    Article  PubMed  CAS  Google Scholar 

  61. Lawrence T, Gilroy DW, Colville-Nash PR, et al. Possible new role for NF-kappaB in the resolution of inflammation. Nat Med. 2001;7:1291–7.

    Article  PubMed  CAS  Google Scholar 

  62. Ryan KM, Ernst MK, Rice NR, et al. Role of NF-kappaB in p53-mediated programmed cell death. Nature. 2000;404:892–7.

    Article  PubMed  CAS  Google Scholar 

  63. Sun X, Shimizu H, Yamamoto K. Identification of a novel p53 promoter element involved in genotoxic stress-inducible p53 gene expression. Mol Cell Biol. 1995;15:4489–96.

    PubMed  CAS  Google Scholar 

  64. Wu H, Lozano G. NF-kappa B activation of p53. A potential mechanism for suppressing cell growth in response to stress. J Biol Chem. 1994;269:20067–74.

    PubMed  CAS  Google Scholar 

  65. Yerneni KK, Bai W, Khan BV, et al. Hyperglycemia-induced activation of nuclear transcription factor kappaB in vascular smooth muscle cells. Diabetes. 1999;48:855–64.

    Article  PubMed  CAS  Google Scholar 

  66. Kang BP, Frencher S, Reddy V, et al. High glucose promotes mesangial cell apoptosis by oxidant-dependent mechanism. Am J Physiol Renal Physiol. 2003;284:F455–66.

    PubMed  CAS  Google Scholar 

  67. Dudek H, Datta SR, Franke TF, et al. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science. 1997;275:661–5.

    Article  PubMed  CAS  Google Scholar 

  68. Jin K, Mao XO, Zhu Y, et al. MEK and ERK protect hypoxic cortical neurons via phosphorylation of Bad. J Neurochem. 2002;80:119–25.

    Article  PubMed  CAS  Google Scholar 

  69. Leri A, Liu Y, Claudio PP, et al. Insulin-like growth factor-1 induces Mdm2 and down-regulates p53, attenuating the myocyte renin-angiotensin system and stretch-mediated apoptosis. Am J Pathol. 1999;154:567–80.

    Article  PubMed  CAS  Google Scholar 

  70. Leri A, Liu Y, Wang X, et al. Overexpression of insulin-like growth factor-1 attenuates the myocyte renin-angiotensin system in transgenic mice. Circ Res. 1999;84:752–62.

    PubMed  CAS  Google Scholar 

  71. Nakamura S, Watanabe H, Miura M, et al. Effect of the insulin-like growth factor I receptor on ionizing radiation-induced cell death in mouse embryo fibroblasts. Exp Cell Res. 1997;235:287–94.

    Article  PubMed  CAS  Google Scholar 

  72. Peruzzi F, Prisco M, Dews M, et al. Multiple signaling pathways of the insulin-like growth factor 1 receptor in protection from apoptosis. Mol Cell Biol. 1999;19:7203–15.

    PubMed  CAS  Google Scholar 

  73. Myers Jr MG, Grammer TC, Wang LM, et al. Insulin receptor substrate-1 mediates phosphatidylinositol 3′-kinase and p70S6k signaling during insulin, insulin-­like growth factor-1, and interleukin-4 stimulation. J Biol Chem. 1994;269:28783–9.

    PubMed  CAS  Google Scholar 

  74. Kennedy SG, Wagner AJ, Conzen SD, et al. The PI 3-kinase/Akt signaling pathway delivers an anti-apoptotic signal. Genes Dev. 1997;11:701–13.

    Article  PubMed  CAS  Google Scholar 

  75. Kulik G, Klippel A, Weber MJ. Antiapoptotic signalling by the insulin-like growth factor I receptor, phosphatidylinositol 3-kinase, and Akt. Mol Cell Biol. 1997;17:1595–606.

    PubMed  CAS  Google Scholar 

  76. Pronk GJ, McGlade J, Pelicci G, et al. Insulin-induced phosphorylation of the 46- and 52-kDa Shc proteins. J Biol Chem. 1993;268:5748–53.

    PubMed  CAS  Google Scholar 

  77. Kang BP, Urbonas A, Baddoo A, et al. IGF-1 inhibits the mitochondrial apoptosis program in mesangial cells exposed to high glucose. Am J Physiol Renal Physiol. 2003;285:F1013–24.

    PubMed  CAS  Google Scholar 

  78. Napoli C, Martin-Padura I, de Nigris F, et al. Deletion of the p66Shc longevity gene reduces systemic and tissue oxidative stress, vascular cell apoptosis, and early atherogenesis in mice fed a high-fat diet. Proc Natl Acad Sci USA. 2003;100:2112–6.

    Article  PubMed  CAS  Google Scholar 

  79. Baumann P, West SC. Role of the human RAD51 protein in homologous recombination and double-stranded-break repair. Trends Biochem Sci. 1998;23:247–51.

    Article  PubMed  CAS  Google Scholar 

  80. Tombline G, Fishel R. Biochemical characterization of the human RAD51 protein. I. ATP hydrolysis. J Biol Chem. 2002;277:14417–25.

    Article  PubMed  CAS  Google Scholar 

  81. Trojanek J, Ho T, Del Valle L, et al. Role of the insulin-like growth factor I/insulin receptor substrate 1 axis in Rad51 trafficking and DNA repair by homologous recombination. Mol Cell Biol. 2003;23:7510–24.

    Article  PubMed  CAS  Google Scholar 

  82. Yang S, Chintapalli J, Sodagum L, et al. Activated IGF-1R inhibits hyperglycemia-induced DNA damage and promotes DNA repair by homologous recombination. Am J Physiol Renal Physiol. 2005;289:F1144–52.

    Article  PubMed  CAS  Google Scholar 

  83. Gotoh N, Toyoda M, Shibuya M. Tyrosine phosphorylation sites at amino acids 239 and 240 of Shc are involved in epidermal growth factor-induced mitogenic signaling that is distinct from Ras/mitogen-activated protein kinase activation. Mol Cell Biol. 1997;17:1824–31.

    PubMed  CAS  Google Scholar 

  84. Lowenstein EJ, Daly RJ, Batzer AG, et al. The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling. Cell. 1992;70:431–42.

    Article  PubMed  CAS  Google Scholar 

  85. Baynes JW, Thorpe SR. Role of oxidative stress in diabetic complications: a new perspective on an old paradigm. Diabetes. 1999;48:1–9.

    Article  PubMed  CAS  Google Scholar 

  86. Tran H, Brunet A, Griffith EC, et al. The many forks in FOXO’s road. Science. 2003;STKE 172:RE5.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashwani Malhotra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Vashistha, H., Meggs, L.G., Malhotra, A. (2011). Cardiorenal Protection in Diabetes Mellitus. In: Dhalla, N., Nagano, M., Ostadal, B. (eds) Molecular Defects in Cardiovascular Disease. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7130-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-7130-2_26

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-7129-6

  • Online ISBN: 978-1-4419-7130-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics