Skip to main content

Sobolev Spaces

  • Chapter
  • First Online:
Partial Differential Equations I

Part of the book series: Applied Mathematical Sciences ((AMS,volume 115))

  • 11k Accesses

Abstract

In this chapter we develop the elements of the theory of Sobolev spaces, a tool that, together with methods of functional analysis, provides for numerous successful attacks on the questions of existence and smoothness of solutions to many of the basic partial differential equations. For a positive integer k, the Sobolev space \({H}^{k}({\mathbb{R}}^{n})\) is the space of functions in \({L}^{2}({\mathbb{R}}^{n})\) such that, for |α| ≤ k, Dα u, regarded a priori as a distribution, belongs to \({L}^{2}({\mathbb{R}}^{n})\). This space can be characterized in terms of the Fourier transform, and such a characterization leads to a notion of \({H}^{s}({\mathbb{R}}^{n})\) for all \(s\in \mathbb{R}\). For s < 0, \({H}^{s}({\mathbb{R}}^{n})\) is a space of distributions. There is an invariance under coordinate transformations, permitting an invariant notion of Hs(M) whenever M is a compact manifold. We also define and study Hs(Ω) when Ω is a compact manifold with boundary.

The tools from Sobolev space theory discussed in this chapter are of great use in the study of linear PDE; this will be illustrated in the following chapter. Chapter 13 will develop further results in Sobolev space theory, which will be seen to be of use in the study of nonlinear PDE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Adams, Sobolev Spaces, Academic, New York, 1975.

    MATH  Google Scholar 

  2. S. Agmon, Lectures on Elliptic Boundary Problems, Van Nostrand, New York, 1964.

    Google Scholar 

  3. T. Aubin, Nonlinear Analysis on Manifolds. Monge-Ampere Equations, Springer, New York, 1982.

    Google Scholar 

  4. J. Bergh and J. Löfstrom, Interpolation spaces, an Introduction, Springer, New York, 1976.

    Book  Google Scholar 

  5. L. Bers, F. John, and M. Schechter, Partial Differential Equations, Wiley, New York, 1964.

    MATH  Google Scholar 

  6. A. P. Calderon, Intermediate spaces and interpolation, the complex method, Stud. Math. 24(1964), 113–190.

    Google Scholar 

  7. W. Donoghue, Distributions and Fourier Transforms, Academic, New York, 1969.

    MATH  Google Scholar 

  8. G. Folland, Introduction to Partial Differential Equations, Princeton University Press, Princeton, N. J., 1976.

    MATH  Google Scholar 

  9. A. Friedman, Generalized Functions and Partial Differential Equations, Prentice-Hall, Englewood Cliffs, N. J., 1963.

    Book  Google Scholar 

  10. D. Fujiwara, Concrete characterizations of the domains of fractional powers of some elliptic differential operators of the second order, Proc. Jpn. Acad. 43(1967), 82–86.

    Google Scholar 

  11. L. Hörmander, The Analysis of Linear Partial Differential Operators, Vol. 1, Springer, New York, 1983.

    MATH  Google Scholar 

  12. P. Lax, The theory of hyperbolic equations. Stanford Lecture Notes, 1963.

    Google Scholar 

  13. J. Lions and E. Magenes, Non-homogeneous Boundary Problems and Applications I, II, Springer, New York, 1972.

    Book  Google Scholar 

  14. S. Mizohata, The Theory of Partial Differential Equations, Cambridge University Press, Cambridge, 1973.

    MATH  Google Scholar 

  15. C. B. Morrey, Multiple Integrals in the Calculus of Variations, Springer, New York, 1966.

    MATH  Google Scholar 

  16. L. Schwartz, Théorie des Distributions, Hermann, Paris, 1950.

    MATH  Google Scholar 

  17. S. Sobolev, On a theorem of functional analysis, Mat. Sb. 4(1938), 471–497; AMS Transl. 34(1963), 39–68.

    Google Scholar 

  18. S. Sobolev, Partial Differential Equations of Mathematical Physics, Dover, New York, 1964.

    MATH  Google Scholar 

  19. E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, N. J., 1970.

    MATH  Google Scholar 

  20. F. Treves, Basic Linear Partial Differential Equations, Academic, New York, 1975.

    MATH  Google Scholar 

  21. H. Triebel, Theory of Function Spaces, Birkhauser, Boston, 1983.

    Book  Google Scholar 

  22. K. Yosida, Functional Analysis, Springer, New York, 1965.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael E. Taylor .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Taylor, M.E. (2011). Sobolev Spaces. In: Partial Differential Equations I. Applied Mathematical Sciences, vol 115. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-7055-8_4

Download citation

Publish with us

Policies and ethics