Skip to main content

Vertebrates That Regenerate As Models For Guiding Stem Cels

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 695))

Abstract

There are several animal model organisms that have the ability to regenerate severe injuries by stimulating local cells to restore damaged and lost organs and appendages. In this chapter, we will describe how various vertebrate animals regenerate different structures (central nervous system, heart and appendages) as well as detail specific cellular and molecular features concerning the regeneration of these structures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lewitzky M, Yamanaka S. Reprogramming somatic cells torwards pluripotency by defined factors. Curr Opin Biotechnol 2007; 18:467–473.

    CAS  PubMed  Google Scholar 

  2. Graf T, Enver T. Forcing cells to change lineages. Nature 2009; 462:587–594.

    CAS  PubMed  Google Scholar 

  3. Yamanaka S. A fresh look at ips cells. Cell 2009; 137:13–17.

    CAS  PubMed  Google Scholar 

  4. Okada TS. Transdifferentiation: flexibility in cell differentiation. Oxford: Oxford University Press; 1991.

    Google Scholar 

  5. Graw J. Genetic aspects of embryonic eye development in vertebrates. Dev Genet 1996; 18:181–197.

    CAS  PubMed  Google Scholar 

  6. Reyer RW, Wooliftt RA, Withersty LT. Stimulation of lens regeneration from the newt dorsal iris when implanted into the blastema of the regenerating limb. Dev Biol 1973; 32:258–281.

    CAS  PubMed  Google Scholar 

  7. Hyaga M, Kodama R, Eguchi G. Basic fibroblast growth factor as one of the essential factors regulating lens transdifferentiation of pigment epithelial cells. Int J Dev Biol 1993; 37:319–326.

    Google Scholar 

  8. Hayashi T, Mizuno N, Ueda Y et al. Fgf2 triggers iris-derived lens regeneration in newt eye. Mech Dev 2004; 121:519–526.

    CAS  PubMed  Google Scholar 

  9. Hayashi T, Mizuno N, Owaribe K et al. Regulated lens regeneration from isolated pigment epithelial cells of newt iris in culture in response to fgf2/4. Differentiation 2002; 70:101–108.

    CAS  PubMed  Google Scholar 

  10. Grogg MW, Call MK, Okamoto M et al. Bmp-inhibition-driven regulation of six-3 underlies induction of newt lens regeneration. Nature 2005; 438:858–862.

    CAS  PubMed  Google Scholar 

  11. Halder G, Callaerts P, Gehring WJ. Induction of ectopic eyes by targeted expression of the eyeless gene in drosophila. Science 1995; 267:1788–1792.

    CAS  PubMed  Google Scholar 

  12. Altmann CR, Chow RL, Lang RA et al. Lens induction by pax-6 in Xenopus laevis. Dev Biol 1997; 185:119–123.

    CAS  PubMed  Google Scholar 

  13. Rio-Tsonis KD, Washabaugh CH, Tsonis PA. Expression of pax-6 during urodele eye development and lens regeneration. Proc Natl Acad Sci USA 1995; 92:5092–5096.

    PubMed  Google Scholar 

  14. Madhavan M, Haynes TL, Frisch NC et al. The role of pax-6 in lens regeneration. Proc Natl Acad Sci USA 2006; 103:14848–14853.

    CAS  PubMed  Google Scholar 

  15. Agata K, Kobayashi H, Itoh Y et al. Genetic charaterization of the multipotent dedifferentiated state of pigmented epithelial cells in vitro. Development 1993; 118:1993.

    Google Scholar 

  16. Maki N, Suetsugu-Maki R, Tarui H et al. Expression of stem cell pluripotency factors during regeneration in newts. Dev Dyn 2009; 238:1613–1616.

    CAS  PubMed  Google Scholar 

  17. Maki N, Takechi K, Sano S et al. Rapid accumulation of nucleostemin in nucleolus during newt regeneration. Dev Dyn 2007; 236:941–950.

    CAS  PubMed  Google Scholar 

  18. Freeman G. Lens regeneration from cornea in Xenopus laevis. J Exp Zool 963; 154:39–66.

    Google Scholar 

  19. Filoni S, Bosco L, Cioni C. The role of the neural retina in lens regeneration from cornea in larval Xenopus leavis. Acta Embryol Morphol Exp 1982; 3:15–28.

    CAS  PubMed  Google Scholar 

  20. Filoni S, Bernardini S, Cannata SM. Experimental analysis of lens-forming capacity in Xenopus borealis larvae. J Exp Zool 2006; 305A:538–550.

    Google Scholar 

  21. Bosco L, Filoni S. Relationships between presence of the eye cup and maintenance of lens-forming capacity in larval xenopus laevis. Dev Growth Differ 1992; 34:619–625.

    Google Scholar 

  22. Grainger RM, Henry JJ, Henderson R. Reinvestigation of the role of the optic vesicle in embryonic lens induction. Development 1988; 102:517–526.

    CAS  PubMed  Google Scholar 

  23. Gargioli C, Giambra V, Santoni S et al. The lens-regenerating competence in the outer cornea and epidermis of larval Xenopus laevis is related to pax6 expression. J Anat 2008; 212:612–620.

    CAS  PubMed  Google Scholar 

  24. Stone LS. The role of retinal pigment cells in regenerating neural retinae of adult salamander eyes. J Exp Zoo 1950; 113:9–31.

    Google Scholar 

  25. Bonnet C. Sur les Reproductions des Salamandres. Oeuvres d’Histoire naturelle et de Philosophie. Neutchatel 1781; 5:356.

    Google Scholar 

  26. Sakami S, Histomi O, Sakakibara S et al. Downregulation of otx2 in the dedifferentiated RPE cells of regenerating newt retina. Developmental Brain Research 2005; 155:49–59.

    CAS  PubMed  Google Scholar 

  27. De Leeuw AM, Gaur VP, Saari JC et al. Immunolocalization of cellular retinol-, retinaldhyde-and retinoic acid-binding proteins in rat retina during pre-and postnatal development. J Neurocytol 1990; 19:253–264.

    PubMed  Google Scholar 

  28. Park CM, Hollenberg MJ. Basic fibroblast growth factor induces retinal regeneration in vivo. Dev Biol 1989; 134:201–205.

    CAS  PubMed  Google Scholar 

  29. Zhao S, Thornquist SC, Barnstable CJ. In vitro transdifferentiation of embryonic rat retinal pigment epithelium to neural retina. Brain Res 1995; 677:300–310.

    CAS  PubMed  Google Scholar 

  30. Stroeva OG, Mitashov VI. Retinal pigment epithelium: proliferation and differentiation during development and regeneration. Int Rev Cytol 1983; 83:211–293.

    Google Scholar 

  31. Park CM, Hollenberg MJ. Induction of retinal regeneration in vivo by growth factors. Dev Biol 1991; 148:322–333.

    CAS  PubMed  Google Scholar 

  32. Reh TA, Levine EM. Multipotent stem cells and progenitors in the vertebrate retina.J Neurobiol 1998; 80:206–220.

    Google Scholar 

  33. Sakami S, Etter P, Reh TA. Activin signaling limits the competence for retinal regeneration from the pigment epithelium. Mech Dev 2008; 125:106–116.

    CAS  PubMed  Google Scholar 

  34. Fischer AJ, Reh TA. Müller glia are a potential source of neural regeneration in the postnatal chicken retina. Nat Neurosci 2001; 4:247–252.

    CAS  PubMed  Google Scholar 

  35. Thummel R, Kassen SC, Enright JM et al. Characterization of Mëller glia and neuronal progenitors during adult zebrafish retinal regeneration. Exp Eye Res 2008; 87:433–444.

    CAS  PubMed  Google Scholar 

  36. Bernardos RL, Barthel LK, Meyers JR et al. Late-stage neuronal progenitors in the retina are radial Müeller glia that function as retinal stem cells. J Neurosci 2007; 27:7028–7040.

    CAS  PubMed  Google Scholar 

  37. Raymond PA, Barthel LK, Bernardos RL et al. Molecular characterization of retinal stem cells and their niches in adult zebrafish. BMC Dev Biol 2006; 6:36–53.

    PubMed  Google Scholar 

  38. Braisted JE, Essman TF, Raymond PA. Selective regeneration of photoreceptors in goldfish retina. Development 1994; 120:2409–2419.

    CAS  PubMed  Google Scholar 

  39. Braisted JE, Raymond PA. Regeneration of dopaminergic neurons in goldfish retina. Development 1992; 114:913–919.

    CAS  PubMed  Google Scholar 

  40. Raymond PA. The unique origin of rod photoreceptors in the teleost retina. Trends Neurosci 1985; 8:12–17.

    Google Scholar 

  41. Raymond PA, Reifler MJ, Rivlin PK. Regeneration of goldfish retina: rod precursors are a likely source of regenerated cells. J Neurobiol 1988; 19:431–463.

    CAS  PubMed  Google Scholar 

  42. Kirsche W, Kirsche K. Experimentelle untersuchungen zur frage der regeneration und funktion des tectums opticum von carassius carassuis. Z Mikrosk-Anat Forsch 1961; 67:140–182.

    CAS  PubMed  Google Scholar 

  43. Parish CL, Beljajeva A, Arenas E et al. Midbrain dopaminergic neurogenesis and behavioural recovery in a salamander lesion-induced regeneration model. Development 2007; 134:2881–2887.

    CAS  PubMed  Google Scholar 

  44. Endo T, Yoshino J, Kado K et al. Brain regeneration in anuran amphibians. Dev Growth Differ 2007; 49:121–129.

    PubMed  Google Scholar 

  45. Okamoto M, Ohsawa H, Hayashi T et al. Regeneration of retinotectal projections after optic tectum removal in adult newts. Mol Vis 2007; 13:2112–2118.

    PubMed  Google Scholar 

  46. Kirsche K, Kirsche W. Regenerative vorgänge im telencephalon von Ambystoma mexicanum. Journal für Hirnforschung 1963/1964; 6:421–436.

    Google Scholar 

  47. Richter W, Kranz D. Autoradiographische Untersuchungen der postnatalen Proliferationsaktivität in den Matrixzonen des Telencephalons und des Diencephalons beim Axolotl (Ambystoma mexicanum), unter Berücksichtigung der Proliferation im olfactorischen Organ. Zeitschrift Mikrosk-Anat Forschung 1981; 95:883–904.

    CAS  Google Scholar 

  48. Kirsche W. The significance of matrix zones for brain regeneration and brain transplantation with special consideration of lower vertebrates. In: Wallace RB, Das GD, eds. Neural Tissue Transplantation Research. New York: Springer-Verlag, 1983:65–104.

    Google Scholar 

  49. Stevenson JA, Yoon MG. Regeneration of optic nerve fibers enhances cell proliferation in the goldfish optic tectum. Brain Res 1978; 153:345–351.

    CAS  PubMed  Google Scholar 

  50. Stevenson JA, Yoon MG. Kenetics of cell proliferation in the halved tectum of adult goldfish. Brain Res 1980; 184:11–22.

    CAS  PubMed  Google Scholar 

  51. Kaslin J, Ganz J, Geffarth M et al. Stem cells in the adult zebrafish cerebellum: initiation and maintenance of a novel stem cell niche. J Neurosci 2009; 29:6142–6153.

    CAS  PubMed  Google Scholar 

  52. Grandel H, Kaslin J, Ganz J et al. Neural stem cells and neurogenesis in the adult zebrafish brain: origin, proliferation dynamics, migration and cell fate. Dev Biol 2006; 295:263–277.

    CAS  PubMed  Google Scholar 

  53. Zupanc GKH, Ott R. Cell proliferation after lesions in the cerebellum of adult teleost fish: time course, origin and type of new cells produced. Exp Neurol 1999; 160:78–87.

    CAS  PubMed  Google Scholar 

  54. Zupanc GKH, Hinsch K, Gage FH. Proliferation, migration, differentiation and long-term survival of new cells in the adult zebrafish brain. J Comp Neurol 2005; 488:290–319.

    PubMed  Google Scholar 

  55. Ekström P, Johnsson C-M, Ohlin L-M. Ventricular proliferation zones in the brain of an adult teleost fish and their relation to neuromeres and migration (secondary matrix) zones. J Comp Neurol 2001; 436:92–110.

    PubMed  Google Scholar 

  56. Becker CG, Becker T. Gradients of ephrin-a2 and ephrin-a5b mrna during retinotopic regeneration of the optic projection is adult zebrafish. J Comp Neurol 2000; 427:469–483.

    CAS  PubMed  Google Scholar 

  57. Springer AD. Normal and abnormal retinal projections following the crush of one optic nerve in goldfish (Carrassius auratus). J Comp Neurol 1981; 199:87–95.

    CAS  PubMed  Google Scholar 

  58. Hatten ME. Central nervous system neuronal migration. Annu Rev Neurosci 1999; 22:511–539.

    CAS  PubMed  Google Scholar 

  59. Campbell K, Goetz M. Radial glia: multi-purpose cells for vertebrate brain development. Trends Neurosci 2002; 25:235–238.

    CAS  PubMed  Google Scholar 

  60. Noctor SC, Flint AC, Weissman TA et al. Neurons derived from radial glial cells establish radial units in neocortex. Nature 2001; 409:714–720.

    CAS  PubMed  Google Scholar 

  61. Holder N, Clarke JDW, Kamalati T, et al. Heterogeneity in spinal radial glia demonstrated by intermediate filament expression and hrp labelling. J Neurocytol 1990; 19:915–928.

    CAS  PubMed  Google Scholar 

  62. O’Hara CM, Egar MW, Chernoff EAG. Reorganization of the ependyma during axolotl spinal cord regeneration: changes in intermediate filament and fibronectin expression. Dev Dyn 1992; 193:103–115.

    PubMed  Google Scholar 

  63. Mchedlishvili L, Epperlein HH, Telzerow A et al. A clonal analysis of neural progenitors during axolotl spinal cord regeneration reveals evidence for both spatially restricted and multipotent progenitors. Development 2007; 134:2083–2093.

    CAS  PubMed  Google Scholar 

  64. Butler EG, Ward MB. Reconstitution of the spinal cord after ablation in adult triturus. Dev Biol 1967; 15:454–486.

    Google Scholar 

  65. Egar MW, Singer M. The role of ependyma in spinal cord after ablation in adult triturus. Exp Neurol 1972; 37:422–430.

    CAS  PubMed  Google Scholar 

  66. Nordlander RH, Singer M. The role of ependyma in regeneration of the spinal cord in the urodele amphibian tail. J Comp Neurol 1978; 180:349–374.

    CAS  PubMed  Google Scholar 

  67. Echeverri K, Tanaka EM. Ectoderm to mesoderm lineage switching during axolotl tail regeneration. Science 2002; 298:1993–1996.

    CAS  PubMed  Google Scholar 

  68. Schnapp E, Kragl M, Rubin L et al. Hedgehog signaling controls dorsoventral patterning, blastema cell proliferation and cartilage induction during axolotl tail regeneration. Development 2005; 132:3243–3253.

    CAS  PubMed  Google Scholar 

  69. Beck CW, Christen B, Slack JMW. Molecular pathways needed for regeneration of spinal cord and muscle in a vertebrate. Dev Cell 2003; 5:429–439.

    CAS  PubMed  Google Scholar 

  70. Sugiura T, Tazaki A, Ueno N et al. Xenopus wnt-5a induces an ectopic larval tail at injured site, suggesting a crucial role for noncanonical wnt signal in tail regeneration. Mech Dev 2009; 126:56–67.

    CAS  PubMed  Google Scholar 

  71. Becker T, Wullimann MF, Becker CG et al. Axonal regrowth after spinal cord transection in adult zebrafish. J Comp Neurol 1997; 337:577–595.

    Google Scholar 

  72. Bernstein JJ. Relation of spinal cord regeneration to age in adult goldfish. Exp Neurol 1964; 9:161–174.

    CAS  PubMed  Google Scholar 

  73. Reimer MM, Soerensen I, Kuscha V et al. Motor neuron regeneration in adult zebrafish. J Neurosci 2008; 28:8510–8516.

    CAS  PubMed  Google Scholar 

  74. Becker T, Lieberoth BC, Becker CB et al. Differences in the regenerative response of neuronal cell populations and indications for plasticity in intraspinal neurons after spinal cord transection in adult zebrafish. Mol Cell Neurosci 2005; 30:265–278.

    CAS  PubMed  Google Scholar 

  75. Anderson MJ, Waxman SG, Laufer M. Fine structure of regenerated ependyma and spinal cord in Sternarchus albifrons. Anat Rec 1983; 205:73–83.

    CAS  PubMed  Google Scholar 

  76. Anderson MJ, Rossettl DL, Lorenz LA. Neuronal differentiation in vitro from precursor cells of regenerating spinal cord of the adult teleost Apteronotus albifrons. Cell Tissue Res 1994; 278:243–248.

    CAS  PubMed  Google Scholar 

  77. Anderson MJ, Waxman SG, Fong HL. Explant cultures of teleost spinal cord: source of neurite outgrowth. Dev Biol 1987; 119:601–604.

    CAS  PubMed  Google Scholar 

  78. Reimer MM, Kuscha V, Wyatt C et al. Sonic hedgehog is a polarized signal for motor neuron regeneration in adult zebrafish. J Neurosci 2009; 29(48):15073–15082.

    CAS  PubMed  Google Scholar 

  79. Bernstein JJ, Gelderd JB. Regeneration of the long spinal tracts in the goldfish. Brain Res 1970; 20:33–38.

    CAS  PubMed  Google Scholar 

  80. Bhatt DH, Otto SJ, Depoister B et al. Cyclic amp-induced repair of zebrafish spinal circuits. Science 2004; 305:254–258.

    CAS  PubMed  Google Scholar 

  81. Oberpriller JO, Oberpriller JC. Response of the adult newt ventricle to injury. J Exp Zoo 1974; 187:249–260.

    CAS  Google Scholar 

  82. Poss KD, Wilson LG, Keating MT. Heart regeneration in zebrafish. Science 2002; 298:2188–2190.

    CAS  PubMed  Google Scholar 

  83. Bader D, Oberpriller JO. Repair and reorganization of minced cardiac muscle in the adult newt (Notophthalmus viridescens. J Morphol 1978; 155:349–358.

    CAS  PubMed  Google Scholar 

  84. Betencourt-Dias M, Mittnacht S, Brockes JP. Heterogeneous proliferative potential in regenerative adult newt cardiomyocytes. J Cell Biol 2003; 116:4001–4009.

    Google Scholar 

  85. Flink IL. Cell cycle reentry of ventricular and atrial cardiomyocytes and cells within the epicardium following amputation of the ventricular apex in the axolotl, Amblystoma mexicanum. Anat Embryol 2002; 205:235–244.

    PubMed  Google Scholar 

  86. Laube F, Heister M, Scholz C et al. Re-programming of newt cardiomyocytes is induced by tissue regeneration. J of Cell Science 2006; 119:4719–4729.

    CAS  Google Scholar 

  87. Kikuchi K, Holdaway JE, Werdich AA et al. Primary contribution to zebrafish heart regeneration by gata4+ cardiomyocytes. Nature 2010; 464:601–605.

    CAS  PubMed  Google Scholar 

  88. Joplin C, Sleep E, Raya M et al. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature 2010; 464:606–609.

    Google Scholar 

  89. Lepilina A, Coon AN, Kikuchi K et al. A dynamic epicardial injury response supports progenitor cell activity during zebrafish heart regeneration. Cell 2006; 127:607–619.

    CAS  PubMed  Google Scholar 

  90. Raya A, Koth CM, Buescher D et al. Activation of notch signaling pathway precedes heart regeneration in zebrafish. Proc Natl Acad Sci USA 2003; 100:11889–11895.

    CAS  PubMed  Google Scholar 

  91. Lien CL, Schebesta M, Makino S et al. Gene expression analysis of zebrafish heart regeneration. PLoS Biology 2006; 4:1386–1396.

    CAS  Google Scholar 

  92. Lavine KJ, Yu K, White AC et al. Endocardial and epicardial derived fgf signals regulate myocardial proliferation and differentiation in vivo. Dev Cell 2005; 8:85–95.

    CAS  PubMed  Google Scholar 

  93. Brockes JP, Kumar A. Appendage regeneration in adult vertebrates and implications for regenerative medicine. Science 2005; 310:1919–1923.

    CAS  PubMed  Google Scholar 

  94. Poss KD, Keating MT, Nechiporuk A. Tales of regeneration in zebrafish. Dev Dyn 2003; 226:202–210.

    PubMed  Google Scholar 

  95. Straube WL, Tanaka EM. Reversibility of the differentiated state: regeneration in amphibians. Artif Organs 2006; 30:743–755.

    PubMed  Google Scholar 

  96. Muneoka K, Fox WF, Bryant S. Cellular contribution from dermis and cartilage to the regenerating llimb blastema in axolotls. Dev Biol 1986; 116:256–260.

    CAS  PubMed  Google Scholar 

  97. Gardiner DM, Muneoka K, Bryant SV. The migration of dermal cells during blastema formation in axolotls. Dev Biol 1986; 118:488–493.

    CAS  PubMed  Google Scholar 

  98. Bryant SV, Endo T, Gardiner DM. Vertebrate limb regeneration and the origin of the limb stem cells. Int J Dev Biol 2002; 46:887–896.

    PubMed  Google Scholar 

  99. Hay ED. Electron microscopic observations of muscle dedifferentiation in regenerating Amblystoma limbs. Dev Biol 1959; 1:555–585.

    Google Scholar 

  100. Hay ED. The fine structure of differentiating muscle in the salamander tail. Zeitschrift für Zellforschung 1963; 59:6–34.

    CAS  Google Scholar 

  101. Mauro A. Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol 1961; 9:493–495.

    CAS  PubMed  Google Scholar 

  102. Collins CA, Olsen I, Zammit PS et al. Stem cell function, self-renewal and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 2005; 122:289–301.

    CAS  PubMed  Google Scholar 

  103. Montarras D, Morgan J, Collins C et al. Direct isolation of satellite cells for skeletal muscle regeneration. Science 2005; 309:2064–2067.

    CAS  PubMed  Google Scholar 

  104. Morrison JI, Loeoef S, He P et al. Salamander limb regeneration involves the activation of a multipotent skeletal muscle satellite cell population. J Cell Biol 2006; 172:433–440.

    CAS  PubMed  Google Scholar 

  105. Thornton CS. The histogenesis of muscle in the regenerating fore limb of larval Amblyostoma punctatum. J Morphol 1938; 62:17–47.

    Google Scholar 

  106. Kintner CR, Brockes JP. Monoclonal antibodies identify blastemal cells derived from dedifferentiating muscle in newt limb regeneration. Nature 1984; 308:67–69.

    CAS  PubMed  Google Scholar 

  107. Lo DC, Allen F, Brockes JP. Reversal of muscle differentiation during urodele limb regeneration. Proc Natl Acad Sci USA 1993; 90:7230–7234.

    CAS  PubMed  Google Scholar 

  108. Kumar A, Velloso CP, Imokawa Y et al. Plasticity of retrovirus-labelled myotubes in the newt limb regeneration blastema. Dev Biol 2000; 218:125–136.

    CAS  PubMed  Google Scholar 

  109. Echeverri K, Clarke JDW, Tanaka EM. In vivo imaging indicates muscle fiber dedifferentiation is a major contributor to the regenerating tail blastema. Dev Biol 2001; 236:151–164.

    CAS  PubMed  Google Scholar 

  110. Tanaka EM, Drechsel DN, Brockes JP. Thrombin regulates S-phase re-entry by cultured newt myotubes. Current Biology 1999; 9:792–799.

    CAS  PubMed  Google Scholar 

  111. Rollman-Dinsmore C, Bryant SV. The distrubution of marked dermal cells from small localized implants in limb regenerates. Dev Biol 1984; 106:275–281.

    CAS  PubMed  Google Scholar 

  112. Muneoka K, Fox WF, Bryant SV. Cellular contibution from dermis and cartilage to the regenerating limb blastema in axololts. Dev Biol 1986; 116:256–260.

    CAS  PubMed  Google Scholar 

  113. Chalkey DT. A quantitative histological analysis of forelimb regeneration in Triturus viridescens. J Morphol 1954; 94:21–70.

    Google Scholar 

  114. Kragl M, Knapp D, Nacu E et al. Cells keep a memory fo their tissue origin during axolotl limb regeneration. Nature 2009; 460:60–65.

    CAS  PubMed  Google Scholar 

  115. Namenwirth M. The inheritance of cell differentiation during limb regeneration in the axolotl. Dev Biol 1974; 41:42–56.

    CAS  PubMed  Google Scholar 

  116. Steen TP. Stability of chondrocyte differentiation and contribution of muscle to cartilage during limb regeneration in the axolotl (Siredon mexicanum). J Exp Zoo 1968; 167:49–77.

    CAS  Google Scholar 

  117. Holtzer H, Avery G, Holtzer S. Some properties of the regenerating limb blastema cells of salamanders. Biological Bulletin 1954; 107:313.

    Google Scholar 

  118. Pietsch P. Differentiation in regeneration: i. The development of muscle and cartilage following deplantation of regenerating limb blastemata of amblystoma larvae. Dev Biol 1961; 3:255–264.

    CAS  PubMed  Google Scholar 

  119. Pietsch P. The effect of heterotropic musculature on myogenesis during limb regeneration in Amblystoma larvae. The Anat Rec 1961; 141:295–303.

    CAS  Google Scholar 

  120. Steen TP. Stability of chondrocyte differentiation and contribution of muscle to cartilage during limb regeneration in the axolotl (Siredon mexicanum). J Exp Zoo 1968; 167:49–78.

    CAS  Google Scholar 

  121. Morrison JI, Borg P, Simon A. Plasticity and recovery of skeletal muscle satellite cells during limb regeneration. FASEB Journal 2009; 24:Nov 6. [Epub ahead of print].

    Google Scholar 

  122. Odelberg SJ, Kollhoff A, Keating MT. Dedifferentiation of mammalian myotubes induced by msx1. Cell 2000; 103:1099–1109.

    CAS  PubMed  Google Scholar 

  123. Mescher AL. Effects of adult newt limb regeneration of partial and complete skin flaps over the amputation surface. J Exp Zoo 1976; 195:117–128.

    CAS  Google Scholar 

  124. Thornton CS. The effect of apical cap removal on limb regeneration in amblystoma larvae. J Exp Zoo 1957; 134:357–381.

    CAS  Google Scholar 

  125. Tassava RA, Garling DJ. Regenerative responses in larval axolotl limbs with skin grafts over the amputation surface. J Exp Zoo 1979; 208:97–110.

    CAS  Google Scholar 

  126. Polezhaev LV, Faworina WN. Über die Rolle des Epithels in den Anfänglichen Entwicklungstadien einer Regenerationsanlage der Extremität beim Axolotl. Wilhelm Roux’ Archiv Entwicklungsmech Org 1935; 133:701–727.

    Google Scholar 

  127. Tank PW. Skin of non-limb origin blocks regeneration of the newt forlimb. Prog Clin Biol Res 1983; 110:565–575.

    PubMed  Google Scholar 

  128. Riddiford LM. Autoradiographic studies of tritiated thymidine infused into the blastema of the early regenerate in the adult newt, triturus. J Exp Zoo 1960; 144:25–31.

    CAS  Google Scholar 

  129. Hay ED, Fischman DA. Origin of the blastema in regenerating limbs of the newt triturus viridescens. Dev Biol 1961; 3:26–59.

    CAS  PubMed  Google Scholar 

  130. Saunders JW, Gasseling MT, Errick JE. Inductive activity and enduring cellular constitution of a supernumerary apical ectodermal ridge grafted to the limb bud of the chick embryo. Dev Biol 1976; 50:16–25.

    PubMed  Google Scholar 

  131. Saunders JW. The proximo-distal sequence of origin of the parts of the chick wing and the role of the ectoderm. J Exp Zoo 1948; 108:363–403.

    Google Scholar 

  132. Carlson BM. Morphogenetic interactions between rotated skin duffs and underlying stump tissues in regenerating axolotl forelimbs. Dev Biol 1974; 39:263–285.

    CAS  PubMed  Google Scholar 

  133. Bryant SV, Iten LE. Supernumerary limbs in amphibians: experimental production in Notophthalmus viridescens and a new interpretation of their formation. Dev Biol 1976; 50:212–234.

    CAS  PubMed  Google Scholar 

  134. Thornton CS. Influence of an eccetric epidermal cap on limb regeneration in Ambystoma larvae. Dev Biol 1960; 2:551–569.

    CAS  PubMed  Google Scholar 

  135. Thornton CS, Thornton MT. The regeneration of accessory limb parts following epidermal cap transplantation in urodeles. Experimentia 1965; 21:146–148.

    CAS  Google Scholar 

  136. Lee Y, Hami D, Val SD et al. Maintenance of blastemal proliferation by functionally diverse epidermis in regenerating zebrafish fins. Dev Biol 2009; 331:270–280.

    CAS  PubMed  Google Scholar 

  137. Viviano CM, Horton CE, Maden M et al. Synthesis and release of 9-cis retinoic acid by the urodele wound epidermis. Development 1995; 121:3753–3762.

    CAS  Google Scholar 

  138. Stoick-Cooper CL, Weidinger G, Riehle KJ et al. Distinct wnt signaling pathways have opposing roles in appendage regeneration. Development 2007; 134:479–489.

    CAS  PubMed  Google Scholar 

  139. Laforest L, Brown CW, Poleo G et al. Involvement of the sonic hedgehog, patched1 and bmp2 genes in patterning of the zebrafish dermal fin rays. Development 1998; 125:4175–4184.

    CAS  PubMed  Google Scholar 

  140. Maden M. Vitamin a and pattern formation in the regenerating limb. Nature 1982; 295:672–675.

    CAS  PubMed  Google Scholar 

  141. White JA, Boffa MB, Jones B et al. A zebrafish retinoic acid receptor expressed in the regenerating caudal fin. Development 1994; 120:1861–1872.

    CAS  PubMed  Google Scholar 

  142. Saxena S, Niazi IA. Effect of vitamin A excess on hind limb regeneration in tadpoles of the toad, bufo andersonii (boulenger). Indian J Exp Biol 1977; 15:435–439.

    CAS  PubMed  Google Scholar 

  143. Ghosh S, Roy S, Seguin C et al. Analysis of the expression and function of wnt-5a and wnt-5b in developing and regenerating axolotl (Ambystoma mexicanum) limbs. Dev Growth Differ 2000; 50:289–297.

    Google Scholar 

  144. Christensen RN, Weinstein M, Tassava RA. Expression of fibroblast growth factors 4, 8 and 10 in limbs, flanks and blastemas of ambystoma. Dev Dyn 2002; 223:193–203.

    CAS  PubMed  Google Scholar 

  145. Geraudie J, Singer M. Necessity of an adequate nerve supply for regeneration of the amputated pectoral fin in the teleost fundulus. J Exp Zoo 1985; 234:367–374.

    CAS  Google Scholar 

  146. Singer M. The influence of the nerve in regeneration of the amphibian extremity. Q Rev Biol 1952; 27:169–200.

    CAS  PubMed  Google Scholar 

  147. Singer M. The nervous system and regeneration of the forelimb of adult triturus. J Exp Zoo 1942; 90:377–399.

    Google Scholar 

  148. Goss RJ, Stagg MW. The regeneration of fins and fin rays in Fundulus heteroclitus. J Exp Zoo 1957; 136:487–507.

    CAS  Google Scholar 

  149. Endo T, Bryant SV, Gardiner DM. A stepwise model system for limb regeneration. Dev Biol 2004; 270:135–145.

    CAS  PubMed  Google Scholar 

  150. Satoh A, Gardiner DM, Bryant SV et al. Nerve-induced ectopic limb blastemas in the axolotl are equivalent to amputation-induced blastemas. Dev Biol 2007; 312:231–244.

    CAS  PubMed  Google Scholar 

  151. Satoh A, Graham GMC, Bryant SV et al. Neurotrophic regulation of epidermal dedifferentiation during wound healing and limb regeneration in the axolotl (Ambystoma mexicanum). Dev Biol 2008; 319:321–335.

    CAS  PubMed  Google Scholar 

  152. Singer M, Inoue S. The nerve and the epidermal apical cap in regeneration of the forelimb of adult triturus. J Exp Zoo 1964; 115:105–116.

    Google Scholar 

  153. Kumar A, Gates PB, Brockes JP. Positional indentity of adult stem cells in salamander limb regeneration. Comptes Rendus Biologies 2007; 330:485–490.

    CAS  PubMed  Google Scholar 

  154. Kumar A, Godwin JW, Gates PB et al. Molecular basis for the nerve dependence of limb regeneration in an adult vertebrate. Science 2007; 318:772–777.

    CAS  PubMed  Google Scholar 

  155. Silva SMd, Gates PB, Brockes JP. The newt orthology of CD59 is implicated in proximodistal identity during amphibian limb regeneration. Dev Cell 2002; 3:547–555.

    PubMed  Google Scholar 

  156. Echeverri K, Tanaka EM. Proximodistal patterning during limb regeneration. Dev Biol 2005; 279:391–401.

    CAS  PubMed  Google Scholar 

  157. Brockes JP, Kintner CR. Glial growth factor and nerve-dependent proliferation in the regeneration blastema of urodele amphibians. Cell 1986; 45:301–306.

    CAS  PubMed  Google Scholar 

  158. Albert P, Boilly B, Courty J et al. Stimulation in cell culture of mesenchymal cells of newt limb blastemas by edgfi and ii (basic or acidic fgf). Cell Differ 1987; 21:63–68.

    CAS  PubMed  Google Scholar 

  159. Wang L, Marchionni MA, Tassava RA. Cloning and neuronal expression of a type iii newt neuregulin and rescue of denerated, nerve-dependent newt limb blastemas. J Neurobiol 2000; 43:150–158.

    CAS  PubMed  Google Scholar 

  160. Mullen LM, Bryant SV, Torok MA et al. Nerve dependency of regeneration: the role of distal-less and fgf signaling in amphibian limb regeneration. Development 1996; 122:3487–3497.

    CAS  PubMed  Google Scholar 

  161. Kuehn LC, Schulman HM, Ponka P. Iron-transferrin requirements and transferrin receptor expression in proliferating cells. In: Ponka P, Schulman HM, Woodworth RC, eds. Iron Transport and Storage. Boca Raton: CRC Press, 1990:149–191.

    Google Scholar 

  162. Mescher AL, Connell E, Hsu C et al. Transferrin is necessary and sufficient for the neural effect on growth in amphibian limb regeneration blastemas. Dev Growth Differ 1997; 39:677–684.

    CAS  PubMed  Google Scholar 

  163. Whitehead GG, Makino S, Lien CL et al. Fgf20 is essential for initiating zebrafish fin regeneration. Science 2005; 310:1957–1960.

    CAS  PubMed  Google Scholar 

  164. Poss KD, Shen J, Nechiporuk A et al. Roles for fgf signaling during zebrafish fin regeneration. Dev Biol 2000; 222:347–358.

    CAS  PubMed  Google Scholar 

  165. Kubo F, Takeichi M, Nakagawa S. Wnt2b controls retinal cell differentiation at the ciliary marginal zone. Development 2003; 130:587–598.

    CAS  PubMed  Google Scholar 

  166. Kubo F, Takeichi M, Nakagawa S. Wnt2b inhibits differentiation of retinal progenitor cells in the absence of notch activity by downregulating the expression of proneural genes. Development 2005; 132:2759–2770.

    CAS  PubMed  Google Scholar 

  167. Kawakami Y, Esteban CR, Raya M et al. Wnt/ß-catenin signaling regulates vertebrate limb regeneration. Genes and Development 2006; 20:3232–3237.

    CAS  PubMed  Google Scholar 

  168. Yokoyama H, Ogino H, Stoick-Cooper CL et al. Wnt/ß-catenin signaling has an essential role in the initiation of limb regeneration. Dev Biol 2007; 306:170–178.

    CAS  PubMed  Google Scholar 

  169. Lin G, Slack JMW. Requirement for wnt and fgf signaling in Xenopus tadpole tail regeneration. Dev Biol 2008; 316:323–335.

    CAS  PubMed  Google Scholar 

  170. Levesque M, Gatien S, Finnson K et al. Transforming growth factor: β signaling is essential for limb regeneration in axolotls. PLoS One 2007; 11:2–14.

    Google Scholar 

  171. Ho DM, Whitman M. Tgf-B signaling is required for multiple processes during Xenopus tail regeneration. Dev Biol 2008; 315:203–216.

    CAS  PubMed  Google Scholar 

  172. Inman GJ, Nicolas FJ, Callahan JF et al. Sb-431542 is a potent and specific inhibitor of transforming growth factor-B superfamily type I activin receptor-like kinase (alk) receptors alk4, alk5 and alk7. Molecular Pharmacology 2002; 62:65–74.

    CAS  PubMed  Google Scholar 

  173. Jazwinska A, Badakov R, Keating MT. Activin-ßa signaling is required for zebrafish fin regeneration. Current Biology 2007; 17:1390–1395.

    CAS  PubMed  Google Scholar 

  174. Smith A, Avaron F, Guay D et al. Inhibition of bmp signaling during zebrafish fin regeneration disrupts fin growth and scleroblast differentiation and function. Dev Biol 2006; 299:438–454.

    CAS  PubMed  Google Scholar 

  175. Roy S, Gardiner DM. Cyclopamine induces digit loss in regenerating axolotl limbs. J Exp Zool 2002; 293:186–190.

    CAS  PubMed  Google Scholar 

  176. Quint E, Smith A, Avaron F et al. Bone patterning is altered in the regenerating zebrafish caudal fin after ectopic expression of sonic hedgehog and bmp2b or exposure to cyclopamine. Proc Natl Acad Sci USA 2002; 99:8713–8718.

    CAS  PubMed  Google Scholar 

  177. Roy S, Gardiner DM, Bryant SB. Vaccinia as a tool for functional analysis in regenerating limbs: ectopic expression of shh. Dev Biol 2000; 218:199–205.

    CAS  PubMed  Google Scholar 

  178. Endo T, Tamura K, Ide H. Analysis of gene expression during Xenopus forelimb regeneration. Dev Biol 2000; 220:296–306.

    CAS  PubMed  Google Scholar 

  179. Yakushiji N, Suzuki M, Satoh A et al. Correlation between shh expression and DNA methylation status of the limb-specific shh enhancer region during limb regenertion in amphibians. Dev Biol 2007; 312:171–182.

    CAS  PubMed  Google Scholar 

  180. Yakushiji N, Suzuki M, Satoh A et al. Effects of activation of hedgehog signaling on patterning, growth and differentiation in Xenopus froglet limb regeneration. Dev Dyn 2009; 238:1887–1896.

    CAS  PubMed  Google Scholar 

  181. Dent JN. Limb regeneration is larvae and metamorphosing individuals of the south african clawed toad. J Morphol 1962; 110:61–77.

    CAS  PubMed  Google Scholar 

  182. Endo T, Yokoyama H, Tamura K et al. Shh expression in developing and regenerating limb buds of xenopus laevis. Dev Dyn 1997; 209:227–232.

    CAS  PubMed  Google Scholar 

  183. Moneoka K, Holler-Dinsmore G, Bryant SV. Intrinsic control of regenerative loss in Xenopus laevis limb. J Exp Zoo 1986; 240:47–54.

    Google Scholar 

  184. Lee Y, Grill S, Sanchez A et al. Fgf signaling instructs position-dependent growth rate during zebrafish fin regeneration._Development 2005; 132:5173–5183.

    CAS  PubMed  Google Scholar 

  185. Kizil C, Otto GW, Geisler R et al. Simplet controls cell proliferation and gene transcription during zebrafish caudal fin regeneration. Dev Biol 2009; 325:329–340.

    CAS  PubMed  Google Scholar 

  186. Thermes V, Candal E, Alunni A et al. Medaka simplet (fam53b) belongs to a family of novel vertebrate genes controlling cell proliferation. Development 2006; 133:1881–1890.

    CAS  PubMed  Google Scholar 

  187. Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature 2000; 408:307–310.

    CAS  PubMed  Google Scholar 

  188. Villiard E, Brinkmann H, Moiseeva O et al. Urodele p53 tolerates amino acid changes found in p53 varients linked to human cancer. BMC Evolutionary Biology 2007; 7:180–194.

    PubMed  Google Scholar 

  189. Ferretti P, Brockes JP. Culture of newt cells from different tissues and their expression of a regeneration-associated antigen. J Exp Zoo 1988; 247:77–91.

    CAS  Google Scholar 

  190. Tanaka EM, Gann AAF, Gates PB et al. Newt myotubes reenter the cell cycle by phosphorylation of the retinoblastoma protein. J Cell Biol 1997; 136:155–165.

    CAS  PubMed  Google Scholar 

  191. Florini JR, Ewton DZ, Magri KA. Hormones, growth factors and myogenic differentiation. Annual Review Physiology 1991; 53:201–216.

    CAS  Google Scholar 

  192. Olson EN. Proto-oncogenes in the regulatory circuit for myogenesis. Seminars in Cell Biology 1992; 3:127–136.

    CAS  PubMed  Google Scholar 

  193. Schneider JW, Gu W, Zhu L et al. Reversal of terminal differentiation mediates by p107 in Rb-/-muscle cells. Science 1994; 264 (1467–1471).

    CAS  PubMed  Google Scholar 

  194. Davidson DR, Crawley A, Hill RE et al. Position-dependent expression of two related homeobox genes in developing vertebrate limbs. Nature 1991; 352:429–431.

    CAS  PubMed  Google Scholar 

  195. Summerbell D, Lewis JH, Wolpert L. Positional information in chick limb morphogenesis. Nature 1973; 244:492–496.

    CAS  PubMed  Google Scholar 

  196. Robert B, Sassoon D, Jacq B et al. Hox-7, a mouse homeobox gene with a novel pattern of expression during embryogenesis. EMBO Journal 1989; 8:91–100.

    CAS  PubMed  Google Scholar 

  197. Song K, Wang Y, Sassoon D. Expression of hox-7.1 in myoblasts inhibits terminal differentiation and induces cell transformation. Nature 1992; 360:477–481.

    CAS  PubMed  Google Scholar 

  198. Woloshin P, Song K, Degnin C et al. Msx1 inhibits myod expression in fibroblast x 10t1/2 cell hybrids. Cell 1995; 82:611–620.

    CAS  PubMed  Google Scholar 

  199. Akimenko MA, Johnson SL, Westerfield M et al. Differential induction of four msx homeobox genes during fin development and regeneration in zebrafish. Development 1995; 121:347–357.

    CAS  PubMed  Google Scholar 

  200. Carlson MRJ, Bryant SV, Gardiner DM. Expression of msx-2 during development, regeneration and wound healing in axolotl limbs. J Exp Zoo 1998; 282:715–723.

    CAS  Google Scholar 

  201. Crews L, Gates PB, Brown R et al. Expression and activity of the newt msx-1 gene in relation to limb regeneration. Proc R Soc Lond B 1995; 259:161–171.

    CAS  Google Scholar 

  202. Kumar A, Velloso CP, Imokawa Y et al. The regenerative plasticity of isolated urodele myofibers and its dependence on msx1. PLoS Biology 2004; 2:1168–1176.

    CAS  Google Scholar 

  203. Hu G, Lee H, Price SM et al. Msx homeobox genes inhibit differentiation through upregulation of cyclin D1. Development 2001; 128:2373–2384.

    CAS  PubMed  Google Scholar 

  204. Thummel R, Bai S, Michael P et al. Inhibition of zebrafish fin regeneration using in vivo electroporation of morpholinos against fgfr1 and msxb. Dev Dyn 2006; 235:335–346.

    Google Scholar 

  205. Barnes RM, Firulli AB. A twist of insight-the role of twist-family bHLH factors in development. Int J Dev Biol 2009; 53:909–924.

    CAS  PubMed  Google Scholar 

  206. Nüsslein-Volhard C, Wieschaus E, Kluding H. Mutations affecting the pattern of the larval cuticle in drosophila melanogaster. Roux’s Archives of Dev Biol 1984; 193:267–282.

    Google Scholar 

  207. Simpson P. Maternal-zygotic gene interactions during formation of the dorsoventral pattern in Drosophila embryos. Genetics 1983; 105:615–632.

    CAS  PubMed  Google Scholar 

  208. Bate M, Rushton E, Currie DA. Cells with persistant twist expression are the embryonic precursors of adult muscles in Drosophila. Development 1991; 113:79–89.

    CAS  PubMed  Google Scholar 

  209. Currie DA, Bate M. The development of adult abdominal muscles in drosophila: myoblasts express twist and are associated with nerves. Development 1991; 113:19–102.

    Google Scholar 

  210. Hjiantoniou E, Anayasa M, Nicolaou P et al. Twist induces reversal of myotubes formation. Differentiation 2007; 76:182–192.

    PubMed  Google Scholar 

  211. Satoh A, Bryant SV, Gardiner DM. Regulation of dermal fibroblast dedifferentiation and redifferentiation during wound healining and limb regeneration in the axolotl. Dev Growth Differ 2008; 50:743–754.

    CAS  PubMed  Google Scholar 

  212. Scaal M, Fürchtbauer EM, Brand-Saberi B. cDermo-1 expression indicates a role in avian skin development. Anat Embryol 2001; 203:1–7.

    CAS  PubMed  Google Scholar 

  213. Li L, Cserjesi P, Olson EN. Dermo-1: a novel twist-related bHLH protein expressed in the developing dermis. Dev Biol 1995; 172:280–292.

    CAS  PubMed  Google Scholar 

  214. Seale P, Sabourin LA, Girgis-Gabardo A et al. Pax7 is required for the specification of myogenic satellite cells. Cell 2000; 102:777–786.

    CAS  PubMed  Google Scholar 

  215. Seale P, Polesskaya A, Rudnicki MA. Adult stem cell specification by wnt signaling in muscle regeneration. Cell Cycle 2003; 2:418–419.

    CAS  PubMed  Google Scholar 

  216. Maekawa M, Takashima N, Arai Y et al. Pax6 is required for production and maintenance of progenitor cells in postnatal hippocampal neurogenesis. Genes Cells 2005; 10:1001–1014.

    CAS  PubMed  Google Scholar 

  217. Lang D, LM M, Huang L et Pax3 functions at a nodal point in melanocyte stem cell differentiation. Nature 2005; 433:884–887.

    CAS  PubMed  Google Scholar 

  218. Lagha M, Sato T, Bajard L et al. Regulation of skeletal muscle stem cell behavior by pax3 and pax7. Cold Spring Harbor Symposia of Quantitative Biology 2008; 73:307–315.

    CAS  Google Scholar 

  219. Seale P, Ishibashi J, Scime A et al. Pax7 is necessary and sufficient for the myogenic specification of cd45+:sca1+ stem cells from injured muscle. PLoS Biology 2004; 2:E130.

    PubMed  Google Scholar 

  220. Asakura A, Seale P, Girgis-Gabardo A et al. Myogenic specification of side population cells in skeletal muscle. J Cell Biol 2002; 159:123–134.

    CAS  PubMed  Google Scholar 

  221. Jackson KA, Mi T, Goodell MA. Hematopoeitic potential of stem cells isolated from murine skeletal muscle. Proc Natl Acad Sci USA 1999; 96:14482–14486.

    CAS  PubMed  Google Scholar 

  222. Gussoni E, Soneoka Y, Strickland CD et al. Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 1999; 401:390–394.

    CAS  PubMed  Google Scholar 

  223. Chen Y, Lin G, Slack JMW. Control of muscle regeneration in the Xenopus tadpole tail by pax7. Development 2006; 133:2303–2313.

    CAS  PubMed  Google Scholar 

  224. McKinnell IW, Ishibashi J, Grand FL et al. Pax7 activates myogenic genes by recruitment of a histone methyltransferase complex. Nat Cell Biol 2008; 10:77–84.

    CAS  PubMed  Google Scholar 

  225. Slack JMW. Morphogenetic properties of the skin in axolotl limb regeneration. J Embryol Exp Morphol 1980; 58:265–288.

    CAS  PubMed  Google Scholar 

  226. Slack JMW. Positional information in the forelimb of the axolotl: properties of the posterior skin. J Embryol Exp Morphol 1983; 73:233–247.

    CAS  PubMed  Google Scholar 

  227. Rollman-Dinsmore C, Bryant SV. Pattern regulation between hind-and forelimbs after blastema exchanges and skin grafts in Notophthalmus viridescens. J Exp Zoo 1982; 223:51–56.

    CAS  Google Scholar 

  228. Tank PW. The ability of localized implants of whole or minced dermis to disrupt pattern formation in the regeneration forelimb of the axolotl. Am J Anat 1981; 162:315–326.

    CAS  PubMed  Google Scholar 

  229. Dunis DA, Namenwirth M. The role of grafted skin in the regeneration of x-irradiated axolotl limbs. Dev Biol 1977; 56:97–109.

    CAS  PubMed  Google Scholar 

  230. Holder N. Organization of connective tissue patterns by dermal fibroblasts in the regenerating axolotl limb. Development 1989; 105:585–593.

    CAS  PubMed  Google Scholar 

  231. Mescher AL. The cellular basis of limb regeneration in urodeles. Int J Dev Biol 1996; 40:785–795.

    CAS  PubMed  Google Scholar 

  232. Bryant SV, Gardiner DM. Limb development and regeneration. Am Zool 1987; 27:675–696.

    Google Scholar 

  233. Carlson BM. Multiple regeneration from axolotl limb stumps bearing cross-transplanted minced muscle regenerates. Dev Biol 1975; 45:203–208.

    CAS  PubMed  Google Scholar 

  234. Mercader N, Tanaka EM, Torres M. Proximodistal identity during vertebrate limb regeneration is regulated by meis homeodomain proteins. Development 2005; 132:4131–4142.

    CAS  PubMed  Google Scholar 

  235. Mercader N, Selleri L, Criado LM et al. Ectopic meis1 expression in the mouse limb bud alters P-Dpatterning in a pbx1-independent manner. Int J Dev Biol 2008; 53:1483–1494.

    Google Scholar 

  236. Capdevila J, Tsukui T, Esteban CR et al. Control of vertebrate limb outgrowth by the proximal factor meis2 and distal antagonism of bmp by gremlin. Molecular Cell 1999; 4:839–849.

    CAS  PubMed  Google Scholar 

  237. Mercader N, Leonardo E, Piedra ME et al. Opposing RA and fgf signals control proximodistal vertebrate limb development through regulation of meis genes. Development 2000; 127:3961–3970.

    CAS  PubMed  Google Scholar 

  238. Izpisua-Belmonte JC, Tickle C, Dolle P et al. Expression of the homeobox hox-4 genes and the specification of position in chick wing development. Nature 1991; 350:585–589.

    CAS  PubMed  Google Scholar 

  239. Krumlauf R. Hox genes in vertebrate development. Cell 1994; 78:191–201.

    CAS  PubMed  Google Scholar 

  240. Gardiner DM, Blumberg B, Komine Y et al. Regulation of hoxa expression in developing and regenerating axolotl limbs. Development 1995; 121:1731–1741.

    CAS  PubMed  Google Scholar 

  241. Geraudie J, Birraux VB. Posterior hoxa genes expression during zebrafish bony ray development and regeneration suggests their involvement in scleroblast differentiation. Dev Genes Evol 2003; 213:182–186.

    CAS  PubMed  Google Scholar 

  242. Thummel R, Ju M, Michael P et al. Both hoxc13 orthologs are functinally important for zebrafish tail fin regeneration. Dev Genes Evol 2007; 217:413–420.

    CAS  PubMed  Google Scholar 

  243. Moens CB, Selleri L. Hox cofactors in vertebrate development. Dev Biol 2006; 291:193–206.

    CAS  PubMed  Google Scholar 

  244. Rinn JL, Bondre C, Gladstone HB et al. Anatomic demarcation by positional variation in fibroblast gene expression programs. PLoS Genetics 2006; 2:10841096.

    Google Scholar 

  245. Chang HY, Chi JT, Dudoit S et al. Diversity, topographic differentiation and positional memory in human fibroblasts. Proc Natl Acad Sci USA 2002; 99:12877–12882.

    CAS  PubMed  Google Scholar 

  246. Makarev E, Spence JR, Rio-Tsonis KD et al. Identification of microRNAs and other small RNAs from the adult newt eye. Mol Vis 2006; 12:1386–1391.

    CAS  PubMed  Google Scholar 

  247. Tsonis PA, Call MK, Grogg MW et al. MicroRNAs and regeneration: let-7 members as potential regulators of dedifferentiation in lens and inner ear hair cell regeneration of the adult newt. Biochem Biophys Res Commun 2007; 362:940–945.

    CAS  PubMed  Google Scholar 

  248. Thatcher EJ, Paydar I, Anderson KK et al. Regulation of zebrafish fin regeneration by microRNAs. Proc Natl Acad Sci USA 2008; 105:18384–18389.

    CAS  PubMed  Google Scholar 

  249. Yin VP, Thomson JM, Thummel R et al. Fgf-dependent depletion of microRNA-133 promotes appendage regeneration in zebrafish. Genes Dev 2008; 22:728–733.

    CAS  PubMed  Google Scholar 

  250. Poss KD, Nechiporuk A, Hillam AM et al. Msp1 defines a proximal blastemal proliferative compartment essential for zebrafish fin regeneration. Development 2002; 129:5141–5149.

    CAS  PubMed  Google Scholar 

  251. Chen JF, Mandel EM, Thomson JM et al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat Genet 2006; 38:228–233.

    CAS  PubMed  Google Scholar 

  252. Sehm T, Sachse C, Frenzel C et al. Mir-196 is an essential early-stage regulator of tail regeneration, upstream of key spinal cord patterning events. Dev Biol 2009; 334:468–480.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christopher L. Antos or Elly M. Tanaka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Landes Bioscience and Springer Science+Business Media

About this chapter

Cite this chapter

Antos, C.L., Tanaka, E.M. (2010). Vertebrates That Regenerate As Models For Guiding Stem Cels. In: Meshorer, E., Plath, K. (eds) The Cell Biology of Stem Cells. Advances in Experimental Medicine and Biology, vol 695. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-7037-4_13

Download citation

Publish with us

Policies and ethics