Skip to main content

Oxygen Reduction Reaction in Acid Solution

  • Reference work entry
  • First Online:
Encyclopedia of Applied Electrochemistry
  • 984 Accesses

Introduction

A widespread interest for the electrochemical oxygen reduction reaction (ORR) has two aspects. The reaction attracts considerable attention from fundamental point of view, as well as it is the most important reaction for application in electrochemical energy conversion devices. It has been in the focus of theoretical considerations as four-electron reaction, very sensitive to the electrode surface structural and electronic properties. It may include a number of elementary reactions, involving electron transfer steps and chemical steps that can form various parallel-consecutive pathways [1–3].

In addition to electrochemical energy conversion in fuel cells, the reaction has applications in energy storage in metal-air batteries, in several industrial processes as the chloralkali electrolysis, and it causes corrosion of metals and alloys in the presence of air. That is why the efforts have been focused on elucidating the mechanism of this reaction and developing proper...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tarasevich MR, Sadkowskiand A, Yeager E (1983) Comprehensive treatise of electrochemistry. In: Conway B, Bockris JOM, Yeager E, Khan SUM, White RE (eds) Vol 7. Plenum, New York

    Google Scholar 

  2. Kinoshita K (1992) Electrochemical oxygen technology. Wiley, New York

    Google Scholar 

  3. Adzic R (1998) Recent advances in the kinetics of oxygen reduction. In: Lipkowski J, Ross PN (eds) Electrocatalysis. Wiley, New York

    Google Scholar 

  4. Bockris JOM, Huq AKMS (1956) The mechanism of the electrolytic evolution of oxygen on platinum. Proc R Soc Lon Ser A 237:277–296

    CAS  Google Scholar 

  5. Watanabe N, Devenathan MAV (1964) Reversible oxygen electrode. J Electrochem Soc 111:615–619

    CAS  Google Scholar 

  6. Hoare JP (1979) Some aspects of the reduction of oxygen at a platinum-oxygen alloy diaphragm. J Electrochem Soc 126:1502–1504

    CAS  Google Scholar 

  7. Hoare JP (1975) On the reduction of oxygen platinum-oxygen alloy diaphragm electrodes. Electrochim Acta 20:267–272

    CAS  Google Scholar 

  8. Damjanovic A (1969) Modern aspects of electrochemistry. In: Bockris JOM, Conway B (eds) Vol 5. Plenum, New York

    Google Scholar 

  9. Wroblowa HS, Rao MLB, Damjanovic A, Bockris JOM (1967) Adsorption and kinetics at platinum electrodes in the presence of oxygen at zero net current. J Electroanal Chem 15:139–150

    CAS  Google Scholar 

  10. Rand DAJ, Woods R (1972) A study of the dissolution of platinum, palladium, rhodium and gold electrodes in 1 M sulphuric acid by cyclic voltammetry. J Electroanal Chem 35:209–218

    CAS  Google Scholar 

  11. Bindra P, Clouser S, Yeager E (1979) Platinum dissolution in concentrated phosphoric acid. J Electrochem Soc 126:1631–1632

    CAS  Google Scholar 

  12. Sepa DB, Vojnovic MV, Damjanovic A (1981) Reaction intermediates as a controlling factor in the kinetics and mechanisms of oxygen reduction at platinum electrodes. Electrochim Acta 26:781–793

    CAS  Google Scholar 

  13. Sepa DB, Vojnovic MV, LjM V, Damjanovic A (1987) Different views regarding the kinetics and mechanisms of oxygen reduction at Pt and Pd electrodes. Electrochim Acta 32:129–134

    CAS  Google Scholar 

  14. Vracar LJM, Sepa DB, Damjanovic A (1986) Palladium electrode in oxygen-saturated aqueous solutions, reduction of oxygen in activation-controlled region. J Electrochem Soc 133:1835–1839

    CAS  Google Scholar 

  15. Antropov LI, Vrzhosek CG, Tarasevich MR, Marinich MA (1972) Issledovanie vliyaniya kationov tetrabutilamminiisulfata na katodnoe vosstavlenie kisloroda na platine v kislikh rastvorakh. Elektrokhimiya 8:149–151

    CAS  Google Scholar 

  16. Mukerjee S, Srinivasan S, Soriaga M, Breen JMC (1995) Effect of preparation conditions of Pt alloys on their electronic, structural, and electrocatalytic activities for oxygen reduction, XRD, XAS and electrochemical studies. J Phys Chem 99:4577–4589

    CAS  Google Scholar 

  17. Mukerjee S (1990) Particle size and structural effects in platinum electrocatalysis. J Appl Electrochem 20:537–548

    CAS  Google Scholar 

  18. Sawyer DT, Day RJ (1963) Kinetics for oxygen reduction at platinum, palladium and silver electrodes. Electrochim Acta 8:589–594

    CAS  Google Scholar 

  19. Zurilla RW, Sen RK, Yeager E (1978) The kinetics of the oxygen reduction reaction on gold in alkaline solution. J Electrochem Soc 125:1103–1109

    CAS  Google Scholar 

  20. Wroblowa HS, Yen-Chi-Pan RG (1976) Electroreduction of oxygen: a new mechanistic criterion. J Electroanal Chem 69:195–201

    CAS  Google Scholar 

  21. Taylor RJ, Humffray AA (1975) J electrochemical studies on glassy carbon electrodes: oxygen reduction in solution of high pH. J Electroanal Chem 64:63–84

    CAS  Google Scholar 

  22. Andruseva SI, Tarasevich MR, Radyushkina KA (1977) K vokhprosu ob elektrovosstanovlenii kisloroda na uglerodistikh materialakh. Elektrokhimiya 13:253–255

    CAS  Google Scholar 

  23. Van Velzen CJ, Remijuse AG, Sluyters-Rehibach M, Sluyters JH (1982) The electrochemical reduction of oxygen to hydrogen peroxide at the dropping mercury electrode part II. Its kinetics 0.4 ≤ pH ≤ 5.9. J Electroanal Chem 142:229–242

    Google Scholar 

  24. Bagotskii VS, Tarasevich MR, Filinovskii VY (1972) Ichet adsorbtsionnoi stadii pri raschete kineticheskiikh parametrovreakcii kisloroda I perekisi vodoroda. Elektrokhimiya 8:84–87

    CAS  Google Scholar 

  25. Tarasevich MR, Zakharkin GI, Smirnova RM (1973) Oxygen and hydrogen peroxide reactions using oxygen −18, hydrogen peroxide decomposition on platinum in the presence of various cations and anions. Elektrokhimiya 9:645–648

    CAS  Google Scholar 

  26. Damjanovic A, Genshaw MA, Bockris JOM (1966) Distinction between intermediates produced in main and side electrodic reactions. J Chem Phys 45:4057–4059

    CAS  Google Scholar 

  27. Anastasijevic NA, Vesovic V, Adzic RR (1987) Determination of the kinetic parameters of the oxygen reduction reaction using the rotating ring-disk electrode part I. Theory, part II. Applications. J Electroanal Chem 229:305–316, 229:317–325

    CAS  Google Scholar 

  28. Paulus UA, Schmidt TJ, Gasteiger HA, Behm RJ (2001) Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study. J Electroanal Chem 495:134–145

    CAS  Google Scholar 

  29. Clouser SJ, Huang JC, Yeager E (1993) Temperature dependence of the Tafel slope for oxygen reduction on platinum in concentrated phosphoric acid. J Appl Electrochem 23:597–605

    CAS  Google Scholar 

  30. Grgur B, Markovic NM, Ross PN Jr (1997) Temperature-dependent oxygen electrochemistry on platinum low-index single crystal surfaces in acid solutions. Can J Chem 75:1465–1471

    CAS  Google Scholar 

  31. Wilson MS, Valerio JA, Gottesfeld S (1995) Low platinum loading electrodes for polymer electrolyte fuel cells fabricated using thermoplastic ionomers. Electrochim Acta 40:355–363

    CAS  Google Scholar 

  32. Kumar GS, Raja M, Parthasarathy S (1995) High performance electrodes with very low platinum loading for polymer electrolyte fuel cells. Electrochim Acta 40:285–290

    CAS  Google Scholar 

  33. Shao MH, Sasaki K, Adzic RR (2006) Pt-Fe nanoparticles as electrocatalysts for oxygen reduction. J Am Chem Soc 128:3526–3527

    CAS  Google Scholar 

  34. Paulus UA, Wokaun A, Sherer GG, Schmidt TJ, Stamenkovic V, Radmilovic V, Markovic NM, Ross PN (2002) Oxygen reduction on carbon-supported Pt-Ni and Pt-Co alloy catalysts. J Phys Chem B 106:4181–4191

    CAS  Google Scholar 

  35. Jalan V, Tayler EJ (1983) Importance of interatomic spacing in catalytic reduction of oxygen in phosphoric acid. J Electrochem Soc 130:2299–2302

    CAS  Google Scholar 

  36. Kim KT, Kim YG, Chung JS (1995) Effect of surface roughening on the catalytic actvity of Pt-Cr electrocatalysts for oxygen reduction in phosphoric fuel cell. J Electrochem Soc 142:1531–1538

    CAS  Google Scholar 

  37. Lima FHB, Lizcano-Valbuena WH, Teiheira-Neto E, Fc N, Gonzalez ER, Ticianelli EA (2006) Pt-Co/C nanoparticles as electrocatalysts for oxygen reduction in H2SO4 and H2SO4/CH3OH electrolytes. Electrochim Acta 52:385–393

    CAS  Google Scholar 

  38. Hwang JT, Chung JS (1993) The morphological and surface properties and their relationship with oxygen reduction activity for platinum-iron electrocatalysts. Electrochim Acta 38:2715–2723

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lj Vracar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Vracar, L. (2014). Oxygen Reduction Reaction in Acid Solution. In: Kreysa, G., Ota, Ki., Savinell, R.F. (eds) Encyclopedia of Applied Electrochemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6996-5_481

Download citation

Publish with us

Policies and ethics