Skip to main content

Electrocatalysis, Novel Synthetic Methods

  • Reference work entry
  • First Online:
Encyclopedia of Applied Electrochemistry
  • 139 Accesses

Introduction

In the last several decades, the electrochemical synthesis and electrodeposition became the enabling fabrication methods behind the train of hi-tech enterprise [1, 2]. There are many examples where electrochemical synthesis provides convenient if not the only approach to deliver the desired structures, materials, or catalytic surfaces. In recent years, the scientific community has witnessed the numerous examples where electrochemical synthesis is used to grow multilayered metallic thin films and nanostructures [3–5], nanoscale metallic architectures [6–12], and high-quality single-crystal overlayers [13–17]. The most recent developments suggest that the electrochemical methods become an attractive fabrication route for catalyst synthesis for fuel cells and metal-air batteries [18, 19]. These new applications make the future of the research in electrochemical material science a seemingly interesting and quite exciting endeavor.

The Metal Deposition via Surface Limited Redox...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Edelstein A, Cammarata R (1996) Nanomaterials: synthesis, properties and applications. IOP, Bristol

    Google Scholar 

  2. Cao G (2004) Nanostructures and nanomaterials: synthesis, properties and applications. Imperial College Press, London

    Google Scholar 

  3. Nicewarner-Peňa S et al (2001) Submicrometer metallic barcodes. Science 294:137–141

    Google Scholar 

  4. Schwarzacher W (1999) Metal nanostructures, a new class of electronic devices. Electrochem Soc Interface 8:20–24

    CAS  Google Scholar 

  5. Pauling H, Juttner K (1992) Top-on-top monolayer formation of foreign metals on gold single crystal surfaces. Electrochim Acta 37:2237–2244

    CAS  Google Scholar 

  6. Whitney T et al (1993) Fabrication and magnetic properties of arrays of metallic nanowires. Science 261:1316–1319

    CAS  Google Scholar 

  7. Sung M et al (2001) Electrodeposition of magnetic nanoparticle arrays with ultra-uniform length in ordered alumite. Appl Phys Lett 78:2964–2966

    Google Scholar 

  8. Bartlett P (2004) Electrodeposition of nanostructured films using self-organizing templates. Electrochem Soc Interface 13:28–33

    Google Scholar 

  9. Whitaker J, Nelson J, Schwartz D (2005) Electrochemical printing: software reconfigurable electrochemical microfabrication. J Micromech Microeng 15:1498–1503

    CAS  Google Scholar 

  10. Kolb D, Ullmann R, Will T (1997) Nanofabrication of small copper clusters on gold(111) electrodes by a scanning tunneling microscope. Science 275:1097–1099

    CAS  Google Scholar 

  11. Zach M, Ng K, Penner R (2000) Molybdenum nanowires by electrodeposition. Science 290:2120–2123

    CAS  Google Scholar 

  12. Li C et al (1999) Fabrication of stable metallic nanowires with quantized conductance. Nanotechnology 10:221–223

    Google Scholar 

  13. Yong F et al (1999) Large magnetoresistance of electrodeposited single-crystal bismuth thin films. Science 284:1335–1337

    Google Scholar 

  14. Sieradzki K, Brankovic S, Dimitrov N (1999) Electrochemical defect-mediated thin-film growth. Science 284:138–141

    CAS  Google Scholar 

  15. Brankovic S, Dimitrov N, Sieradzki K (1999) Surfactant mediated electrochemical deposition of Ag on Au (111). Electrochem Solid State Lett 2:443–445

    CAS  Google Scholar 

  16. Vasilic R, Dimitrov N (2005) Epitaxial growth by monolayer-restricted galvanic displacement. Electrochem Solid State Lett 8:C173–C176

    CAS  Google Scholar 

  17. Hwang S, Oh H, Kwak J (2001) Electrodeposition of epitaxial Cu (111) thin films on Au (111) using defect-mediated growth. J Am Chem Soc 123:7176–7177

    CAS  Google Scholar 

  18. Adzic RR et al (2007) Platinum monolayer fuel cell electrocatalysts. Top Catal 46:249

    CAS  Google Scholar 

  19. Sasaki K et al (2010) Recent advances in platinum monolayer electrocatalysts for oxygen reduction reaction: scale-up synthesis, structure and activity of Pt shells on Pd cores. Electrochim Acta 55:2645

    CAS  Google Scholar 

  20. Brankovic S, Wang J, Adzic R (2001) Metal monolayer deposition by replacement of metal adlayers on electrode surfaces. Surf Sci 474:L173–L179

    CAS  Google Scholar 

  21. Brussel V et al (2003) Oxygen reduction at platinum modified gold electrodes. Electrochim Acta 48:3909–3919

    Google Scholar 

  22. Zhang J et al (2005) Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew Chem Int Ed 44:2132–2135

    CAS  Google Scholar 

  23. Zhang J et al (2005) Mixed-metal Pt monolayer electrocatalysts for enhanced oxygen reduction kinetics. J Am Chem Soc 127:12480–12481

    CAS  Google Scholar 

  24. Zhang J et al (2007) Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 315:220–222

    CAS  Google Scholar 

  25. Park S et al (2002) Transition metal-coated nanoparticle films: vibrational characterization with surface-enhanced Raman scattering. J Am Chem Soc 124:2428–2429

    CAS  Google Scholar 

  26. Kowal A et al (2009) Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2. Nature materials advanced Online Publication http://www.nature.com/nmat/index.html

  27. Gokcen D, Bae SE, Brankovic SR (2010) Stoichiometry of Pt submonolayer deposition via galvanic displacement of underpotentially deposited Cu monolayer. J Electrochem Soc 157:D582

    CAS  Google Scholar 

  28. Huang B et al (1995) Preliminary studies of the use of an automated flow-cell electrodeposition system for the formation of CdTe thin films by electrochemical atomic layer epitaxy. J Electrochem Soc 142:3007–3016

    CAS  Google Scholar 

  29. Fayette M, Liu Y, Bertrand D, Nutariya J, Vasiljevic N, Dimitrov N (2011) From Au To Pt via surface limited redox replacement of Pb UPD in one-cell configuration. Langmuir 27:5650

    CAS  Google Scholar 

  30. Swathirajan S, Burckenstein S (1983) Thermodynamics and kinetics of underpotential deposition of metal monolayers on polycrystalline substrates. Electrochim Acta 28:865–877

    CAS  Google Scholar 

  31. Gokcen D, Bae S, Brankovic S (2007) Nucleation and growth of low-dimensional noble metal structures using galvanic displacement of UPD monolayers. Abstract #1381, 212th ECS Meeting, Washington, DC, 7–12 Oct 2007

    Google Scholar 

  32. Waibel H et al (2002) Initial stages of Pt deposition on Au (111) and Au (100). Electrochim Acta 47:1461–1467

    CAS  Google Scholar 

  33. Bae S-E, Gokcen D, Liu P, Mohammadi P, Brankovic SR (2012) Size effects in monolayer catalysis. Electrocatal. doi:10.1007/s12678-012-0082-5

    Google Scholar 

  34. Kim YG, Kim JY, Vairavapandian D, Stickney JL (2006) Platinum nanofilm formation by EC-ALE via redox replacement of UPD copper: studies using in-situ scanning tunneling microscopy. J Phys Chem B 110:17998

    CAS  Google Scholar 

  35. Chrzanowski W, Wieckowski A (1997) Ultra-thin films of ruthenium on low index platinum single crystal surfaces: an electrochemical study. Langmuir 13:5974–5978

    CAS  Google Scholar 

  36. Chrzanowski W, Kim H, Wieckowski A (1998) Enhancement in methanol oxidation by spontaneously deposited ruthenium on low index platinum electrodes. Catal Lett 50:69–75

    CAS  Google Scholar 

  37. Brankovic S, McBreen J, Adzic R (2001) Spontaneous deposition of Pt on Ru (0001) surface. J Electroanal Chem 503:99–104

    CAS  Google Scholar 

  38. Brankovic S et al (2002) Electrosorption and catalytic properties of bare and Pt modified single crystal and nanostructured Ru surfaces. J Electroanal Chem 524–525:231–241

    Google Scholar 

  39. Brankovic S, McBreen J, Adzic R (2001) Spontaneous deposition of Pd on Ru (0001). Surf Sci 479:L363–L368

    CAS  Google Scholar 

  40. Attard G, Bannister A (1991) The electrochemical behaviour of irreversibly adsorbed palladium on Pt (111) in acid media. J Electroanal Chem 300:467–485

    CAS  Google Scholar 

  41. Llorka M et al (1993) Electrochemical structure-sensitive behavior of irreversibly adsorbed palladium on Pt (100), Pt (111) and Pt (110) in an acidic medium. J Electroanal Chem 351:299–319

    Google Scholar 

  42. Strbac S, Johnston CM, Lu GQ, Crown A, Wieckowski A (2004) In situ STM study of nanosized Ru and Os islands spontaneously deposited on PT(111) and Au(111) electrodes. Surf Sci 573:80

    CAS  Google Scholar 

  43. Brankovic S et al (2002) Carbon monoxide oxidation on bare and Pt-modified Ru(1010) and Ru(0001) single crystal electrodes. J Electroanal Chem 532:57–66

    CAS  Google Scholar 

  44. Inoue H, Brankovic SR, Wang JX, Adzic RR (2002) Oxygen reduction on bare and Pt monolayer-modified Ru(0001), Ru(1010) and Ru nanostructured surfaces. Electrochim Acta 47:3777

    CAS  Google Scholar 

  45. Brankovic SR, Wang JX, Adzic RR (2001) Pt submonolayer on Ru nanoparticles – a novel low Pt loading, high CO tolerance fuel cell electrocatalyst. Electrochem Solid State Lett 4:A217

    CAS  Google Scholar 

  46. Wang JX, Brankovic SR, Zhu Y, Adzic RR (2003) Kinetic characterization of PtRu fuel cell anode catalysts made by spontaneous Pt deposition on Ru nanoparticles. J Electrochem Soc 150:1108

    Google Scholar 

  47. Brankovic SR, Wang JX, Adzic RR (2002) The CO tolerant electrocatalyst with low platinum loading and a process for its application. US Patent 132154

    Google Scholar 

  48. Gokcen D, Bae S-E, Gokcen D, Liu P, Mohammadi P, Brankovic SR (2012) Size effects in monolayer catalysis – model study: Pt submonolayers on Au(111). Electrocatal. doi:10.1007/s12678-012-0082-5

    Google Scholar 

  49. Gokcen D, Miljanic O, Brankovic SR (2010) Morphology control of Pt sub-monolayers, 218th ECS Meeting. Abstract #2015, Las Vegas, NV. 10–15 Oct 2010

    Google Scholar 

  50. Gokcen D, Miljanić OŠ, Brankovic SR (2009) Nano-organization and morphology control of metal monolayers deposited by galvanic displacement of UPD monolayers. 216th The Electrochemical Society Meeting, Abstract #2443, Vienna, 4–9 Oct 2009

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanko Brankovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this entry

Cite this entry

Brankovic, S. (2014). Electrocatalysis, Novel Synthetic Methods. In: Kreysa, G., Ota, Ki., Savinell, R.F. (eds) Encyclopedia of Applied Electrochemistry. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6996-5_409

Download citation

Publish with us

Policies and ethics