Skip to main content

Basic and Clinical Aspects of Sperm Chromomycin A3 Assay

  • Chapter
  • First Online:
Sperm Chromatin

Abstract

Semen quality is conventionally determined according to the number, motility, and morphology of spermatozoa in an ejaculate. In turn, it is generally accepted that an association exists between these semen parameters and fertilizing ability. With the advent of in vitro fertilization (IVF) and related techniques such as intracytoplasmic sperm injection (ICSI), it has become increasingly apparent that the number, motility, and morphology of spermatozoa are not always indicative of a male’s fertility status. Methods exploring sperm DNA stability and integrity have been applied during the last decade to evaluate fertility disorders and to increase the predictive value of sperm analysis for procreation in vivo and in vitro. It has been shown that infertile men have an increased sperm histone–protamine ratio compared to fertile counterparts. This alteration of histone–protamine ratio, also called abnormal packing, increases susceptibility of sperm DNA to external stresses due to poorer chromatin compaction. Recent studies have also underlined the link between protamine deficiency and sperm DNA damage that resulted in poor fertilizing capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WHO. World Health Organization Laboratory manual for examination of human semen. 5th ed. Cambridge: Cambridge University Press; 2010.

    Google Scholar 

  2. Wolf JP, Ducot B, Kunstmann JM, Frydman R, Jouannet P. Influence of sperm parameters on outcome of subzonal insemination in the case of previous IVF failure. off. Hum Reprod. 1992;7(10): 1407–13.

    PubMed  CAS  Google Scholar 

  3. Wolf JP, Bulwa S, Ducot B, Rodrigues D, Jouannet P. Fertilizing ability of sperm with unexplained in vitro fertilization failures, as assessed by the zona-free hamster egg penetration assay: its prognostic value for sperm-oolemma interaction. Fertil Steril. 1996;65(6):1196–201.

    PubMed  CAS  Google Scholar 

  4. Zini A, Libman J. Sperm DNA damage: clinical significance in the era of assisted reproduction. CMAJ. 2006;175(5):495–500.

    Article  PubMed  Google Scholar 

  5. Bianchi PG, Manicardi GC, Urner F, Campana A, Sakkas D. Chromatin packaging and morphology in ejaculated human spermatozoa: evidence of hidden anomalies in normal spermatozoa. Mol Hum Reprod. 1996;2(3):139–44.

    Article  PubMed  CAS  Google Scholar 

  6. Sun JG, Jurisicova A, Casper RF. Detection of deoxyribonucleic acid fragmentation in human sperm: correlation with fertilization in vitro. Biol Reprod. 1997;56(3):602–7.

    Article  PubMed  CAS  Google Scholar 

  7. Irvine DS, Twigg JP, Gordon EL, Fulton N, Milne PA, Aitken RJ. DNA integrity in human spermatozoa: relationships with semen quality. J Androl. 2000;21(1): 33–44.

    PubMed  CAS  Google Scholar 

  8. Zini A, Bielecki R, Phang D, Zenzes MT. Correlations between two markers of sperm DNA integrity, DNA denaturation and DNA fragmentation, in fertile and infertile men. Fertil Steril. 2001;75(4):674–7.

    Article  PubMed  CAS  Google Scholar 

  9. Varghese AC, Bragais FM, Mukhopadhyay D, et al. Human sperm DNA integrity in normal and abnormal semen samples and its correlation with sperm characteristics. Andrologia. 2009;41(4):207–15.

    Article  PubMed  CAS  Google Scholar 

  10. Evenson DP, Darzynkiewicz Z, Melamed MR. Relation of mammalian sperm chromatin hetero­geneity to fertility. Science. 1980;210(4474):1131–3.

    Article  PubMed  CAS  Google Scholar 

  11. Foresta C, Zorzi M, Rossato M, Varotto A. Sperm nuclear instability and staining with aniline blue: abnormal persistence of histones in spermatozoa in infertile men. Int J Androl. 1992;15(4):330–7.

    Article  PubMed  CAS  Google Scholar 

  12. Bianchi PG, Manicardi GC, Bizzaro D, Bianchi U, Sakkas D. Effect of deoxyribonucleic acid protamination on fluorochrome staining and in situ nick-translation of murine and human mature spermatozoa. Biol Reprod. 1993;49(5):1083–8.

    Article  PubMed  CAS  Google Scholar 

  13. Barratt CL, Aitken RJ, Bjorndahl L, et al. Sperm DNA: organization, protection and vulnerability: from basic science to clinical applications–a position report. Hum Reprod. 2010;25(4):824–38.

    Article  PubMed  Google Scholar 

  14. Kumaroo KK, Jahnke G, Irvin JL. Changes in basic chromosomal proteins during spermatogenesis in the mature rat. Arch Biochem Biophys. 1975;168(2): 413–24.

    Article  PubMed  CAS  Google Scholar 

  15. Goldberg RB, Geremia R, Bruce WR. Histone synthesis and replacement during spermatogenesis in the mouse. Differentiation. 1977;7(3):167–80.

    Article  PubMed  CAS  Google Scholar 

  16. Poccia D. Remodeling of nucleoproteins during gametogenesis, fertilization, and early development. Int Rev Cytol. 1986;105:1–65.

    Article  PubMed  CAS  Google Scholar 

  17. Ward WS, Zalensky AO. The unique, complex organization of the transcriptionally silent sperm chromatin. Crit Rev Eukaryot Gene Expr. 1996;6(2–3): 139–47.

    PubMed  CAS  Google Scholar 

  18. Calvin HI, Bedford JM. Formation of disulphide bonds in the nucleus and accessory structures of mammalian spermatozoa during maturation in the epididymis. J Reprod Fertil Suppl. 1971;13:Suppl-75.

    Google Scholar 

  19. Marushige Y, Marushige K. Transformation of sperm histone during formation and maturation of rat spermatozoa. J Biol Chem. 1975;250(1):39–45.

    PubMed  CAS  Google Scholar 

  20. Pellicciari C, Hosokawa Y, Fukuda M, Manfredi Romanini MG. Cytofluorometric study of nuclear ­sulphydryl and disulphide groups during sperm ­maturation in the mouse. J Reprod Fertil. 1983;68(2):371–6.

    Article  PubMed  CAS  Google Scholar 

  21. Bertelsmann H, Kuehbacher M, Weseloh G, Kyriakopoulos A, Behne D. Sperm nuclei glutathione peroxidases and their occurrence in animal species with cysteine-containing protamines. Biochim Biophys Acta. 2007;1770(10):1459–67.

    Article  PubMed  CAS  Google Scholar 

  22. Pogany GC, Corzett M, Weston S, Balhorn R. DNA and protein content of mouse sperm. Implications regarding sperm chromatin structure. Exp Cell Res. 1981;136(1):127–36.

    Article  PubMed  CAS  Google Scholar 

  23. Ward WS, Coffey DS. DNA packaging and organization in mammalian spermatozoa: comparison with somatic cells. Biol Reprod. 1991;44(4):569–74.

    Article  PubMed  CAS  Google Scholar 

  24. Gatewood JM, Cook GR, Balhorn R, Bradbury EM, Schmid CW. Sequence-specific packaging of DNA in human sperm chromatin. Science. 1987;236(4804): 962–4.

    Article  PubMed  CAS  Google Scholar 

  25. Bellve AR, McKay DJ, Renaux BS, Dixon GH. Purification and characterization of mouse protamines P1 and P2. Amino acid sequence of P2. Biochemistry. 1988;27(8):2890–7.

    Article  PubMed  CAS  Google Scholar 

  26. Debarle M, Martinage A, Sautiere P, Chevaillier P. Persistence of protamine precursors in mature sperm nuclei of the mouse. Mol Reprod Dev. 1995;40(1): 84–90.

    Article  PubMed  CAS  Google Scholar 

  27. Zini A, Gabriel MS, Zhang X. The histone to protamine ratio in human spermatozoa: comparative study of whole and processed semen. Fertil Steril. 2007;87(1):217–9.

    Article  PubMed  Google Scholar 

  28. Tavalaee M, Razavi S, Nasr-Esfahani MH. Influence of sperm chromatin anomalies on assisted reproductive technology outcome. Fertil Steril. 2009;91(4): 1119–26.

    Article  PubMed  CAS  Google Scholar 

  29. Krzanowska H. Toluidine blue staining reveals changes in chromatin stabilization of mouse spermatozoa during epididymal maturation and penetration of ova. J Reprod Fertil. 1982;64(1):97–101.

    Article  PubMed  CAS  Google Scholar 

  30. Balhorn R, Weston S, Thomas C, Wyrobek AJ. DNA packaging in mouse spermatids. Synthesis of protamine variants and four transition proteins. Exp Cell Res. 1984;150(2):298–308.

    Article  PubMed  CAS  Google Scholar 

  31. Evenson D, Darzynkiewicz Z, Jost L, Janca F, Ballachey B. Changes in accessibility of DNA to various fluorochromes during spermatogenesis. Cytometry. 1986;7(1):45–53.

    Article  PubMed  CAS  Google Scholar 

  32. Barrera C, Mazzolli AB, Pelling C, Stockert JC. Metachromatic staining of human sperm nuclei after reduction of disulphide bonds. Acta Histochem. 1993;94(2):141–9.

    PubMed  CAS  Google Scholar 

  33. Yossefi S, Oschry Y, Lewin LM. Chromatin condensation in hamster sperm: a flow cytometric investigation. Mol Reprod Dev. 1994;37(1):93–8.

    Article  PubMed  CAS  Google Scholar 

  34. Sakkas D, Manicardi G, Bianchi PG, Bizzaro D, Bianchi U. Relationship between the presence of endogenous nicks and sperm chromatin packaging in maturing and fertilizing mouse spermatozoa. Biol Reprod. 1995;52(5):1149–55.

    Article  PubMed  CAS  Google Scholar 

  35. Kosower NS, Katayose H, Yanagimachi R. Thiol-disulfide status and acridine orange fluorescence of mammalian sperm nuclei. J Androl. 1992;13(4): 342–8.

    PubMed  CAS  Google Scholar 

  36. Evenson DP. Flow cytometry of acridine orange stained sperm is a rapid and practical method for monitoring occupational exposure to genotoxicants. Prog Clin Biol Res. 1986;207(3):121–32.

    PubMed  CAS  Google Scholar 

  37. Auger J, Mesbah M, Huber C, Dadoune JP. Aniline blue staining as a marker of sperm chromatin defects associated with different semen characteristics discriminates between proven fertile and suspected infertile men. Int J Androl. 1990;13(6):452–62.

    Article  PubMed  CAS  Google Scholar 

  38. Wong A, Chuan SS, Patton WC, Jacobson JD, Corselli J, Chan PJ. Addition of eosin to the aniline blue assay to enhance detection of immature sperm histones. Fertil Steril. 2008;90(5):1999–2002.

    Article  PubMed  Google Scholar 

  39. Shalgi R, Seligman J, Kosower NS. Dynamics of the thiol status of rat spermatozoa during maturation: analysis with the fluorescent labeling agent monobromobimane. Biol Reprod. 1989;40(5):1037–45.

    Article  PubMed  CAS  Google Scholar 

  40. Seligman J, Kosower NS, Weissenberg R, Shalgi R. Thiol-disulfide status of human sperm proteins. J Reprod Fertil. 1994;101(2):435–43.

    Article  PubMed  CAS  Google Scholar 

  41. Zubkova EV, Wade M, Robaire B. Changes in spermatozoal chromatin packaging and susceptibility to oxidative challenge during aging. Fertil Steril. 2005;84 suppl 2:1191–8.

    Article  PubMed  CAS  Google Scholar 

  42. Erenpreiss J, Jepson K, Giwercman A, Tsarev I, Erenpreisa J, Spano M. Toluidine blue cytometry test for sperm DNA conformation: comparison with the flow cytometric sperm chromatin structure and TUNEL assays. Hum Reprod. 2004;19(10):2277–82.

    Article  PubMed  CAS  Google Scholar 

  43. Tsarev I, Bungum M, Giwercman A, et al. Evaluation of male fertility potential by Toluidine Blue test for sperm chromatin structure assessment. Hum Reprod. 2009;24(7):1569–74.

    Article  PubMed  CAS  Google Scholar 

  44. Engh E, Clausen OP, Scholberg A, Tollefsrud A, Purvis K. Relationship between sperm quality and chromatin condensation measured by sperm DNA fluorescence using flow cytometry. Int J Androl. 1992;15(5):407–15.

    Article  PubMed  CAS  Google Scholar 

  45. Spano M, Evenson DP. Flow cytometric studies in reproductive toxicology. Prog Clin Biol Res. 1991;372:497–511.

    PubMed  CAS  Google Scholar 

  46. Sakkas D, Urner F, Bizzaro D, et al. Sperm nuclear DNA damage and altered chromatin structure: effect on fertilization and embryo development. Hum Reprod. 1998;13 Suppl 4:11–9.

    PubMed  Google Scholar 

  47. Manicardi GC, Bianchi PG, Pantano S, et al. Presence of endogenous nicks in DNA of ejaculated human spermatozoa and its relationship to chromomycin A3 accessibility. Biol Reprod. 1995;52(4):864–7.

    Article  PubMed  CAS  Google Scholar 

  48. Hayasaka T, Inoue Y. Chromomycin A3 studies in aqueous solutions. Spectrophotometric evidence for aggregation and interaction with herring sperm deoxyribonucleic acid. Biochemistry. 1969;8(6):2342–7.

    Article  PubMed  CAS  Google Scholar 

  49. Evenson DP. Male germ cell analysis by flow cytometry: effects of cancer, chemotherapy, and other factors on testicular function and sperm chromatin structure. Ann N Y Acad Sci. 1986;468:350–67.

    Article  PubMed  CAS  Google Scholar 

  50. Monaco PJ, Rasch EM. Differences in staining with DNA-specific fluorochromes during spermiogenesis. J Histochem Cytochem. 1982;30:585.

    Google Scholar 

  51. Sakkas D, Urner F, Bianchi PG, et al. Sperm chromatin anomalies can influence decondensation after intracytoplasmic sperm injection. Hum Reprod. 1996;11(4):837–43.

    PubMed  CAS  Google Scholar 

  52. Rodman TC, Pruslin FH, Allfrey VG. Mechanisms of displacement of sperm basic nuclear proteins in mammals. An in vitro simulation of post-fertilization results. J Cell Sci. 1982;53:227–44.

    PubMed  CAS  Google Scholar 

  53. Bizzaro D, Manicardi GC, Bianchi PG, Bianchi U, Mariethoz E, Sakkas D. In-situ competition between protamine and fluorochromes for sperm DNA. Mol Hum Reprod. 1998;4(2):127–32.

    Article  PubMed  CAS  Google Scholar 

  54. Kolk AH, Samuel T. Isolation, chemical and immunological characterization of two strongly basic nuclear proteins from human spermatozoa. Biochim Biophys Acta. 1975;393(2):307–19.

    PubMed  CAS  Google Scholar 

  55. Oliva R. Protamines and male infertility. Hum Reprod Update. 2006;12(4):417–35.

    Article  PubMed  CAS  Google Scholar 

  56. Carrell DT, Emery BR, Hammoud S. Altered protamine expression and diminished spermatogenesis: what is the link? Hum Reprod Update. 2007;13(3): 313–27.

    Article  PubMed  CAS  Google Scholar 

  57. Balhorn R. A model for the structure of chromatin in mammalian sperm. J Cell Biol. 1982;93(2):298–305.

    Article  PubMed  CAS  Google Scholar 

  58. Fraser L, Strzezek J. Is there a relationship between the chromatin status and DNA fragmentation of boar spermatozoa following freezing-thawing? Therioge­nology. 2007;68(2):248–57.

    Article  PubMed  CAS  Google Scholar 

  59. Glogowski J, Strzezek J, Jazdzewski J. Intensity of 3 H-actinomycin D (3 H-AMD) binding to chromatin of bull spermatozoa. Reprod Domest Anim. 1994;29: 396–403.

    Article  CAS  Google Scholar 

  60. Gao XL, Patel DJ. Chromomycin dimer-DNA oligomer complexes. Sequence selectivity and divalent cation specificity. Biochemistry. 1990;29(49):10940–56.

    Article  PubMed  CAS  Google Scholar 

  61. Gao XL, Mirau P, Patel DJ. Structure refinement of the chromomycin dimer-DNA oligomer complex in solution. J Mol Biol. 1992;223(1):259–79.

    Article  PubMed  CAS  Google Scholar 

  62. Chakrabarti S, Bhattacharyya D, Dasgupta D. Structural basis of DNA recognition by anticancer antibiotics, chromomycin A(3), and mithramycin: roles of minor groove width and ligand flexibility. Biopolymers. 2000;56(2):85–95.

    Article  PubMed  CAS  Google Scholar 

  63. Hou MH, Robinson H, Gao YG, Wang AH. Crystal structure of the [Mg2+−(chromomycin A3)2]-d(TTGGCCAA)2 complex reveals GGCC binding specificity of the drug dimer chelated by a metal ion. Nucleic Acids Res. 2004;32(7):2214–22.

    Article  PubMed  CAS  Google Scholar 

  64. Fita I, Campos JL, Puigjaner LC, Subirana JA. X-ray diffraction study of DNA complexes with arginine peptides and their relation to nucleoprotamine structure. J Mol Biol. 1983;167(1):157–77.

    Article  PubMed  CAS  Google Scholar 

  65. Hud NV, Milanovich FP, Balhorn R. Evidence of novel secondary structure in DNA-bound protamine is revealed by Raman spectroscopy. Biochemistry. 1994;33(24):7528–35.

    Article  PubMed  CAS  Google Scholar 

  66. Gao XL, Patel DJ. Solution structure of the chromomycin-DNA complex. Biochemistry. 1989;28(2):751–62.

    Article  PubMed  CAS  Google Scholar 

  67. Goodsell DS, Kopka ML, Cascio D, Dickerson RE. Crystal structure of CATGGCCATG and its implications for A-tract bending models. Proc Natl Acad Sci USA. 1993;90(7):2930–4.

    Article  PubMed  CAS  Google Scholar 

  68. Wilson WD, Tanious FA, Barton HJ, et al. DNA sequence dependent binding modes of 4’,6-diamidino-2-phenylindole (DAPI). Biochemistry. 1990;29(36):8452–61.

    Article  PubMed  CAS  Google Scholar 

  69. Kapuscinski J. DAPI: a DNA-specific fluorescent probe. Biotech Histochem. 1995;70(5):220–33.

    Article  PubMed  CAS  Google Scholar 

  70. Trotta E, D’Ambrosio E, Ravagnan G, Paci M. Evidence for DAPI intercalation in CG sites of DNA oligomer [d(CGACGTCG)]2: a 1H NMR study. Nucleic Acids Res. 1995;23(8):1333–40.

    Article  PubMed  CAS  Google Scholar 

  71. De Castro LF, Zacharias M. DAPI binding to the DNA minor groove: a continuum solvent analysis. J Mol Recognit. 2002;15(4):209–20.

    Article  PubMed  Google Scholar 

  72. Bianchi PG, Manicardi G, Bizzaro D, Campana A, Bianchi U, Sakkas D. Use of the guanine-cytosine (GC) specific fluorochrome, chromomycin A3, as an indicator of poor sperm morphology. J Assist Reprod Genet. 1996;13(3):246–50.

    Article  PubMed  CAS  Google Scholar 

  73. Sakkas D, Alvarez JG. Sperm DNA fragmentation: mechanisms of origin, impact on reproductive ­outcome, and analysis. Fertil Steril. 2010;93(4):1027–36.

    Article  PubMed  CAS  Google Scholar 

  74. Franken DR, Franken CJ, de la Guerre H, de Villiers A. Normal sperm morphology and chromatin packaging: comparison between aniline blue and chromomycin A3 staining. Andrologia. 1999;31(6):361–6.

    Article  PubMed  CAS  Google Scholar 

  75. Esterhuizen AD, Franken DR, Lourens JG, Van Zyl C, Muller I, van Rooyen LH. Chromatin packaging as an indicator of human sperm dysfunction. J Assist Reprod Genet. 2000;17(9):508–14.

    Article  PubMed  CAS  Google Scholar 

  76. McPherson SM, Longo FJ. Nicking of rat spermatid and spermatozoa DNA: possible involvement of DNA topoisomerase II. Dev Biol. 1993;158(1):122–30.

    Article  PubMed  CAS  Google Scholar 

  77. Lopez-Fernandez C, Crespo F, Arroyo F, et al. Dynamics of sperm DNA fragmentation in domestic animals II. The stallion. Theriogenology. 2007;68(9):1240–50.

    Article  PubMed  CAS  Google Scholar 

  78. Lopez-Fernandez C, Fernandez JL, Gosalbez A, et al. Dynamics of sperm DNA fragmentation in domestic animals III. Ram. Theriogenology. 2008;70(6):898–908.

    Article  PubMed  CAS  Google Scholar 

  79. Iseki S. DNA strand breaks in rat tissues as detected by in situ nick translation. Exp Cell Res. 1986;167(2):311–26.

    Article  PubMed  CAS  Google Scholar 

  80. McPherson S, Longo FJ. Chromatin structure-function alterations during mammalian spermatogenesis: DNA nicking and repair in elongating spermatids. Eur J Histochem. 1993;37(2):109–28.

    PubMed  CAS  Google Scholar 

  81. Nasr-Esfahani MH, Razavi S, Mozdarani H, Mardani M, Azvagi H. Relationship between protamine deficiency with fertilization rate and incidence of sperm premature chromosomal condensation post-ICSI. Andrologia. 2004;36(3):95–100.

    Article  PubMed  CAS  Google Scholar 

  82. Nasr-Esfahani MH, Salehi M, Razavi S, et al. Effect of sperm DNA damage and sperm protamine deficiency on fertilization and embryo development post-ICSI. Reprod Biomed Online. 2005;11(2):198–205.

    Article  PubMed  CAS  Google Scholar 

  83. Nasr-Esfahani MH, Aboutorabi R, Razavi S. Credibility of chromomycin A3 staining in prediction of fertility. Int J Fertil Steril. 2010;3:5–10.

    Google Scholar 

  84. De Iuliis GN, Thomson LK, Mitchell LA, et al. DNA damage in human spermatozoa is highly correlated with the efficiency of chromatin remodeling and the formation of 8-hydroxy-2’-deoxyguanosine, a marker of oxidative stress. Biol Reprod. 2009;81(3):517–24.

    Article  PubMed  Google Scholar 

  85. Banks S, King SA, Irvine DS, Saunders PT. Impact of a mild scrotal heat stress on DNA integrity in murine spermatozoa. Reproduction. 2005;129(4):505–14.

    Article  PubMed  CAS  Google Scholar 

  86. Aitken RJ, Bennetts LE, Sawyer D, Wiklendt AM, King BV. Impact of radio frequency electromagnetic radiation on DNA integrity in the male germline. Int J Androl. 2005;28(3):171–9.

    Article  PubMed  CAS  Google Scholar 

  87. Aitken RJ, Wingate JK, De Iuliis GN, Koppers AJ, McLaughlin EA. Cis-unsaturated fatty acids stimulate reactive oxygen species generation and lipid peroxidation in human spermatozoa. J Clin Endo­crinol Metab. 2006;91(10):4154–63.

    Article  PubMed  CAS  Google Scholar 

  88. Aitken RJ, De Iuliis GN, McLachlan RI. Biological and clinical significance of DNA damage in the male germ line. Int J Androl. 2009;32(1):46–56.

    Article  PubMed  CAS  Google Scholar 

  89. Aitken RJ, De Iuliis GN. On the possible origins of DNA damage in human spermatozoa. Mol Hum Reprod. 2010;16(1):3–13.

    Article  PubMed  CAS  Google Scholar 

  90. Singleton S, Zalensky A, Doncel GF, Morshedi M, Zalenskaya IA. Testis/sperm-specific histone 2B in the sperm of donors and subfertile patients: variability and relation to chromatin packaging. Hum Reprod. 2007;22(3):743–50.

    Article  PubMed  CAS  Google Scholar 

  91. Iranpour FG, Nasr-Esfahani MH, Valojerdi MR, al-Taraihi TM. Chromomycin A3 staining as a useful tool for evaluation of male fertility. J Assist Reprod Genet. 2000;17(1):60–6.

    Article  PubMed  CAS  Google Scholar 

  92. Aoki VW, Emery BR, Liu L, Carrell DT. Protamine levels vary between individual sperm cells of infertile human males and correlate with viability and DNA integrity. J Androl. 2006;27(6):890–8.

    Article  PubMed  CAS  Google Scholar 

  93. Carrell DT, De JC, Lamb DJ. The genetics of male infertility: a field of study whose time is now. Arch Androl. 2006;52(4):269–74.

    Article  PubMed  CAS  Google Scholar 

  94. Henkel R, Bastiaan HS, Schuller S, Hoppe I, Starker W, Menkveld R. Leucocytes and intrinsic ROS production may be factors compromising sperm chromatin condensation status. Andrologia. 2010;42(2):69–75.

    Article  PubMed  CAS  Google Scholar 

  95. Aitken RJ, De Iuliis GN. Value of DNA integrity assays for fertility evaluation. Soc Reprod Fertil Suppl. 2007;65:81–92.

    PubMed  CAS  Google Scholar 

  96. Borini A, Tarozzi N, Bizzaro D, et al. Sperm DNA fragmentation: paternal effect on early post-­implantation embryo development in ART. Hum Reprod. 2006;21(11):2876–81.

    Article  PubMed  CAS  Google Scholar 

  97. Tarozzi N, Bizzaro D, Flamigni C, Borini A. Clinical relevance of sperm DNA damage in assisted ­reproduction. Reprod Biomed Online. 2007;14(6): 746–57.

    Article  PubMed  CAS  Google Scholar 

  98. Tarozzi N, Nadalini M, Stronati A, et al. Anomalies in sperm chromatin packaging: implications for assisted reproduction techniques. Reprod Biomed Online. 2009;18(4):486–95.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gian Carlo Manicardi PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Manicardi, G.C., Bizzaro, D., Sakkas, D. (2011). Basic and Clinical Aspects of Sperm Chromomycin A3 Assay. In: Zini, A., Agarwal, A. (eds) Sperm Chromatin. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6857-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-6857-9_11

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1781-2

  • Online ISBN: 978-1-4419-6857-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics