Skip to main content

MODIS-Derived Global Fire Products

  • Chapter
  • First Online:
Land Remote Sensing and Global Environmental Change

Abstract

The NASA MODIS global fire data products are digital maps calculated from Terra and Aqua MODIS data, designed primarily to serve the needs of the emissions modeling community. The algorithms were designed to provide a comprehensive global product, and to perform well over the expected range of fire conditions and scene variability. The goal was to maximize product accuracy, and minimize errors of commission and omission. Two products exist, including one, which characterizes actively burning fire locations at satellite overpass time, and two, which depicts the area burned, also called fire-affected areas (URL 1). Since the launch of Terra and Aqua, the user community has expanded to include federal agencies with operational fire monitoring mandates and natural resource managers as well the intended global change researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agresti A (1990) Categorical data analysis. Wiley, New York

    MATH  Google Scholar 

  • Cochrane MA, Alencar A, Schulze MD Jr, Souza CM, Nepstad DC, Lefebvre P, Davidson EA (1999) Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science 284:1832–1835

    Article  Google Scholar 

  • Crutzen PA, Goldammer JG (1993) Fire in the environment: the ecological, atmospheric, and climatic importance of vegetation fires. Dahlem Konferenz (15–20 March 1992, Berlin), ES13, Wiley, Chichester, 400 pp

    Google Scholar 

  • Csiszar I, Denis L, Giglio L, Justice CO, Hewson J (2005) Global fire distribution from MODIS. Int J Wildland Fire 14:117–130

    Article  Google Scholar 

  • Csiszar I, Morisette J, Giglio L (2006a) Validation of active fire detection from moderate resolution satellite sensors: the MODIS example in Northern Eurasia. IEEE Trans Geosci Remote Sens 44:1757–1764

    Article  ADS  Google Scholar 

  • Csiszar I, Justice CO, Goldammer JG, Lynham T, de Groot WJ, Prins EM, Elvidge CD, Oertel D, Lorenz E, Bobbe T, Quayle B, Davies D, Roy D, Boschetti L, Korontzi S, Ambrose S, Stephens G (2006b) The GOFC/GOLD fire mapping and monitoring theme: assessment and strategic plans. In: Earth Science Satellite Remote Sensing. Springer, Dordrecht, The Netherlands

    Google Scholar 

  • Giglio L, Kendall JD, Justice CO (1999) Evaluation of global fire detection algorithms using simulated AVHRR infrared data. Int J Remote Sens 20:1947–1985

    Article  Google Scholar 

  • Giglio L, Kendall JD, Tucker CJ (2000) Remote sensing of fires with the TRMM VIRS. Int J Remote Sens 21:203–207

    Article  Google Scholar 

  • Giglio L, Kendall JD, Mack R (2003a) A multi-year active fire dataset for the tropics derived from the TRMM VIRS. Int J Remote Sens 24:4505–4525

    Article  Google Scholar 

  • Giglio L, Descloitres J, Justice CO, Kaufman YJ (2003b) An enhanced contextual fire detection algorithm for MODIS. Remote Sens Environ 87:273–382

    Article  Google Scholar 

  • Giglio L, Csiszar I, Justice CO (2006) Global distribution and seasonality of active fires as observed with the Terra and Aqua MODIS sensors. J Geophys Res 111:G02016. doi:10.1029/2005JG000142

    Article  Google Scholar 

  • Giglio L, Csiszar I, Restás Á, Morisette JT, Schroeder W, Morton D, Justice CO (2008) Active fire detection and characterization with the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). Remote Sens Environ 112:3055–3063

    Google Scholar 

  • Justice CO, Malingreau JP, Setzer A (1993) Satellite remote sensing of fires: potential and limitation. In: Crutzen P, Goldammer J (eds) Fire in the environment: its ecological, climatic and atmospheric chemical importance. Wiley, Chichester, pp 77–87

    Google Scholar 

  • Justice CO, Giglio L, Korontzi S, Owens J, Morisette JT, Roy DP, Descloitres J, Alleaume S, Petitcolin F, Kaufman Y (2002) The MODIS fire products. Remote Sens Environ 83:244–262

    Article  Google Scholar 

  • Justice CO, Smith R, Gill M, Csiszar I (2003) Satellite-based fire monitoring: current capabilities, future directions and applications in Australia. Int J Wildland Fire 102:247–258

    Article  Google Scholar 

  • Kaufman YJ, Justice CO, Flynn LP, Kendall JD, Prins EM, Giglio L, Ward DE, Menzel WP, Setzer AW (1998) Potential global fire monitoring from EOS-MODIS. J Geophys Res 103(D24):32215–32238

    Article  ADS  Google Scholar 

  • Korontzi S, Roy DP, Justice CO, Ward DE (2004) Modeling and sensitivity analysis of fire emissions in southern African during SAFARI 2000. Remote Sens Environ 92:255–275

    Article  Google Scholar 

  • Korontzi S, McCarty J, Loboda T, Kumar S, Justice C (2006) Global distribution of agricultural fires in croplands from 3 years of Moderate Resolution Imaging Spectroradiometer (MODIS) data. Global Biogeochem Cycles 20:GB2021. doi:10.1029/2005GB002529

    Article  ADS  Google Scholar 

  • Lucht W, Lewis PE (2000) Theoretical noise sensitivity of BRDF and albedo retrieval from the EOS-MODIS and MISR sensors with respect to angular sampling. Int J Remote Sens 21:81–98

    Article  Google Scholar 

  • Masuoka E, Wolfe R, Saleous N, Teague M, Roy DP, Devadiga S, Morisette JT, Maiersperger T, Justice CO MODIS land data products: generation, quality assurance and validation. (In this volumeFloatPlease update the reference “Masuoka et al. (in this volume)” both in the list and text.)

    Google Scholar 

  • Morisette JT, Giglio L, Csiszar I, Justice CO (2005a) Validation of the MODIS Active fire product over Southern Africa with ASTER data. Int J Remote Sens 26:4239–4264

    Article  Google Scholar 

  • Morisette JT, Giglio L, Csiszar I, Setzer A, Schroeder W, Morton D, Justice CO (2005b) Validation of MODIS active fire detection products derived from two algorithms. Earth Interact 9:1–23

    Article  Google Scholar 

  • Roy DP, Landmann T (2005) Characterizing the surface heterogeneity of fire effects using multi-temporal reflective wavelength data. Int J Remote Sens 26:4197–4218

    Article  Google Scholar 

  • Roy D, Giglio L, Kendall J, Justice C (1999) Multitemporal active fire-based burn scar detection algorithm. Int J Remote Sens 20:1031–1038

    Article  Google Scholar 

  • Roy DP, Lewis PE, Justice CO (2002) Burned area mapping using multi-temporal moderate ­spatial resolution data – a bi-directional reflectance model-based expectation approach. Remote Sens Environ 83:263–286

    Article  Google Scholar 

  • Roy DP, Jin Y, Lewis PE, Justice CO (2005) Prototyping a global algorithm for systematic fire affected area mapping using MODIS time series data. Remote Sens Environ 97:137–162

    Article  Google Scholar 

  • Roy DP, Lewis P, Schaaf C, Devadiga S, Boschetti L (2006) The Global impact of cloud on the production of MODIS bi-directional reflectance model based composites for terrestrial monitoring. IEEE Geosci Remote Sens Lett 3(4):452–456. doi:10.1109/LGRS.2006.875433

    Article  ADS  Google Scholar 

  • Russell-Smith J, Yates C, Edwards A, Allan GE, Cook GD, Cooke P, Craig R, Heath D, Smith BR (2003) Contemporary fire regimes of northern Australia, 1997–2001: changes since Aboriginal occupancy, challenges for sustainable management. Int J Wildland Fire 12:283–297

    Article  Google Scholar 

  • Salomon JG, Schaaf CB, Strahler AH, Gao F, Jin YF (2006) Validation of the MODIS bidirectional reflectance distribution function and albedo retrievals using combined observations from the Aqua and Terra platforms. IEEE Trans Geosci Remote Sens 44(6):1555–1565

    Article  ADS  Google Scholar 

  • Schaaf CB, Gao F, Strahler AH, Lucht W, Li X, Tsang T, Strugnell N, Zhang X, Jin Y, Muller J-P, Lewis PE, Barnsley M, Hobson P, Disney M, Roberts G, Dunderdale M, d’Entremont RP, Hu B, Liang S, Privette J, Roy DP (2002) First operational BRDF, albedo and nadir reflectance products from MODIS. Remote Sens Environ 83:135–148

    Article  Google Scholar 

  • Schroeder W, Morisette JT, Csiszar I, Giglio L, Morton D, Justice CO (2005) Characterizing vegetation fire dynamics in Brazil through multi-satellite data: common trends and practical issues. Earth Interact 9(13):1–26

    Article  Google Scholar 

  • Schroeder W, Csiszar I, Morisette JT (2007). Quantifying the impact of cloud obscuration on remote sensing of active fires in the Brazilian Amazon. Remote Sens Environ. doi:10.1016/j.rse.2007.05.004

    Google Scholar 

  • Schroeder W, Prins E, Giglio L, Csiszar I, Schmidt C, Morisette JT, Morton D (2008) Validation of GOES and MODIS active fire detection products using ASTER and ETM+. Remote Sens Environ 112:2711–2726

    Google Scholar 

  • Silva JMN, Pereira JMC, Cabral AI, Sá A, Vasconcelos MJP, Mota B, Grégoire J-M (2003) An estimate of the area burned in southern Africa during the 2000 dry season using SPOT-VEGETATION. J Geophys Res 108(D13):498. doi:10.1029/2002JD002320

    Google Scholar 

  • Simon M, Plummer S, Fierens F, Hoeltzemann JJ, Arino O (2004) Burnt area detection at global scale using ATSR-2: the GLOBSCAR products and their qualification. J Geophys Res 109(D14):D14S02. doi:10.1029/2003JD003622

    Article  Google Scholar 

  • Tansey K, Binaghi E, Boschetti L, Brivio PA, Cabral A, Ershov D, Flasse S, Fraser R, Gallo I, Graetz D, Grégoire J-M, Maggi M, Peduzzi P, Pereira JM, Sá A, Silva J, Sousa A, Stroppiana D, Vasconcelos MJP (2002) Implementation of regional burnt area algorithms for the GBA-2000 initiative. European Commission Joint Research Centre, EUR 20532 EN. Publications of the European Commission, pp 1–159

    Google Scholar 

  • URL 1: http://modis-fire.umd.edu/ Accessed 27 Nov 2007

  • URL 2: http://rapidfire.sci.gsfc.nasa.gov Accessed 27 Nov 2007

  • URL 3: http://maps.geog.umd.edu/firms Accessed 27 Nov 2007

  • URL 4: http://www.cptec.inpe.br/queimadas/ Accessed 27 Nov 27 2007

  • URL 5: http://gofc-fire.umd.edu/index.asp Accessed 27 Nov 2007

  • URL 6: http://map.sdsu.edu/ Accessed 27 Nov 2007

  • Wolfe R, Roy D, Vermote E (1998) The MODIS land data storage, gridding and compositing methodology: L2 Grid. IEEE Trans Geosci Remote Sens 36:1324–1338

    Article  ADS  Google Scholar 

  • Wooster MJ, Zhukov B, Oertel D (2003) Fire radiative energy for quantitative study of biomass burning: derivation from the BIRD experimental satellite and comparison to MODIS fire products. Remote Sens Environ 86:83–107

    Article  Google Scholar 

Download references

Acknowledgments

This paper is dedicated to the memory of Yoram Kaufman, who played an important role in developing the MODIS Fire product and the Fire Radiative Power concept. His collaboration with the MODIS Fire Team is truly missed. The work presented here was funded under NASA Grants NNG04HZ18C (EOS), NNS06AA04A (Applications) and NAG513627 (LBA-ECO Phase II).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher O. Justice .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Justice, C.O. et al. (2010). MODIS-Derived Global Fire Products. In: Ramachandran, B., Justice, C., Abrams, M. (eds) Land Remote Sensing and Global Environmental Change. Remote Sensing and Digital Image Processing, vol 11. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6749-7_29

Download citation

Publish with us

Policies and ethics