Skip to main content

Some Extensions and Applications of the Eisenstein Irreducibility Criterion

  • Chapter
  • First Online:
Quadratic Forms, Linear Algebraic Groups, and Cohomology

Part of the book series: Developments in Mathematics ((DEVM,volume 18))

Summary

Some generalizations of the classical Eisenstein and Schönemann Irreducibility Criteria and their applications are described. In particular some extensions of the Ehrenfeucht–Tverberg irreducibility theorem which states that a difference polynomial f(x) – g(y) in two variables is irreducible over a field K provided the degrees of f and g are coprime, are also given. The discussion of irreducibility of polynomials has a long history. The most famous irreducibility criterion for polynomials with coefficients in the ring \(\mathbb{Z}\) of integers proved by Eisenstein [9] in 1850 states as follows: Eisenstein Irreducibility Criterion. Let \(F(x) = a_0x^n + a_1x^{n-1} + \ldots + a_n\) be a polynomial with coefficient in the ring \(\mathbb{Z}\) of integers. Suppose that there exists a prime number p such that a 0 is not divisible by p, a i is divisible by p for \(1 \leq i \leq n,\), and a n is not divisible by p 2, then F(x) is irreducible over the field \(\mathbb{Q}\) of rational numbers.

2010 Mathematics subject classification. 12E05, 12J10, 12J25.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Aghigh and S. K. Khanduja, On chains associated with elements algebraic over a henselian valued field, Algebra Colloq. 12:4 (2005) 607–616.

    Google Scholar 

  2. V. Alexandru, N. Popescu and A. Zaharescu, A theorem of characterizaton of residual transcendental extension of a valuation, J. Math. Kyoto Univ. 28 (1988) 579–592.

    MATH  MathSciNet  Google Scholar 

  3. S. Bhatia and S. K. Khanduja, Difference polynomials and their generalizations, Mathematika 48 (2001) 293–299.

    Article  MATH  MathSciNet  Google Scholar 

  4. A. Bishnoi and S. K. Khanduja, On Eisenstein-Dumas and generalized Schönemann polynomials, Comm. Algebra 2009 (accepted for publication).

    Google Scholar 

  5. R. Brown, Schönemann Polynomials in Henselian extension fields, Indian J. Pure Appl. Math. 39(5) (2008) 403–410.

    MATH  MathSciNet  Google Scholar 

  6. J. W. S. Cassels, Factorization of polynomials in several variables. Proceedings of the 15th Scandinavian congress; Oslo, 1968, Springer Lecture Notes in Mathematics, 118 (1970), 1–17.

    Google Scholar 

  7. G. Dumas, Sur quelques cas d’irréductibilité des polynômes à coefficients rationnels, J. de Math. Pures et Appliquées, 6 (1906) 191–258.

    Google Scholar 

  8. A. Ehrenfeucht, Kryterium absolutnej nierozkladalnosci wielomianow, Prace Math., 2 (1956) 167–169.

    MATH  MathSciNet  Google Scholar 

  9. G. Eisenstein, Über die Irreduzibilität und einige andere Eigenschaften der Gleichungen, J. für die Reine und Angew. Math., 39 (1850) 160–179.

    Article  MATH  Google Scholar 

  10. A. J. Engler and A. Prestel, Valued Fields, Springer-Verlag, Berlin, 2005.

    MATH  Google Scholar 

  11. A. J. Engler and S. K Khanduja, On irreducible factors of the polynomial f(x) − g(y), Int. J. Math. (2009) (accepted for publication).

    Google Scholar 

  12. M. Juráš, Eisenstein-Dumas criterion for irreducibility of polynomials and projective transformations of the independent variable, JP J. Algebra Number Theory Appl., 6(2) (2006) 221–236.

    MATH  MathSciNet  Google Scholar 

  13. S. K. Khanduja and J. Saha, On a generalization of Eisenstein’s irreducibility criterion, Mathematika, 44 (1997) 37–41.

    Article  MATH  MathSciNet  Google Scholar 

  14. J. Kürschák, Irreduzible Formen, J. für die Reine und Angew. Math., 152 (1923) 180–191.

    Article  MATH  Google Scholar 

  15. S. MacLane, The Schönemann-Eisenstein irreducibility criterion in terms of prime ideals, Trans. Am. Math. Soc., 43 (1938) 226–239.

    MATH  MathSciNet  Google Scholar 

  16. L. Panaitopol and D. Stefănescu, On the generalized difference polynomials, Pacific J. Math., 143(2) (1990) 341–348.

    MATH  MathSciNet  Google Scholar 

  17. N. Popescu and A. Zaharescu, On the structure of the irreducible polynomials over local fields, J. Number Theory, 52 (1995) 98–118.

    Article  MATH  MathSciNet  Google Scholar 

  18. P. Ribenboim, The Theory of Classical Valuations, Springer Verlag, Berlin, 1999.

    MATH  Google Scholar 

  19. T. Schönemann, Von denjenigen Moduln, welche Potenzen von Primzahlen sind, J. für die Reine und Angew. Math., 32 (1846) 93–105.

    Article  MATH  Google Scholar 

  20. H. Tverberg, A remark on Ehrenfeucht’s criterion for irreducibility of polynomials, Prace Mat., 8 (1964) 117–118.

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudesh K. Khanduja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer New York

About this chapter

Cite this chapter

Bishnoi, A., Khanduja, S.K. (2010). Some Extensions and Applications of the Eisenstein Irreducibility Criterion. In: Colliot-Thélène, JL., Garibaldi, S., Sujatha, R., Suresh, V. (eds) Quadratic Forms, Linear Algebraic Groups, and Cohomology. Developments in Mathematics, vol 18. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-6211-9_10

Download citation

Publish with us

Policies and ethics