Skip to main content

Strategies to Investigate Signal Transduction Pathways with Mathematical Modelling

  • Chapter
  • First Online:
Systems Biology for Signaling Networks

Part of the book series: Systems Biology ((SYSTBIOL))

Abstract

Systems biology is an approach by which biological questions are addressed through integrating experiments in iterative cycles with computational modelling, simulation and theory. Systems biology is particularly suitable for the study of cell signalling systems because of the inherent complexity of the signalling networks, the amount and variety of the quantitative data combined for their analysis and some special features of cell signalling systems. Among these features we include the prevalence of transient activation processes and the emergence of non-linear behaviour such as signal amplification, ultrasensitivity, multistability and self-sustained oscillations. In this book chapter we discuss the elements of a systems biology methodology for the investigation of cell signalling systems and illustrate it with a number of examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aebersold R, Auffray C, Baney E et al (2009) Report on EU-USA workshop: how systems biology can advance cancer research (27 October 2008). Mol Oncol 3(1):9–17

    Article  PubMed Central  PubMed  Google Scholar 

  • Aaronson DS, Horvath CM (2002) A road map for those who don’t know JAK-STAT. Science 296(5573):1653–1655

    Article  CAS  PubMed  Google Scholar 

  • Adimy M, Crauste F (2004). Stability and instability induced by time delay in an erythropoiesis model. Monografias del Seminario Matematico Garcia de Galdeano 31:3–12

    Google Scholar 

  • Ashburner M, Ball C, Blake J, Botstein D, Butler H, Cherry J, Davis A, Dolinski K, Dwight S, Eppig J, Harris M, Hill D, Issel-Tarver L, Kasarskis A, Lewis S, Matese J, Richardson J, Ringwald M, Rubin G, Sherlock G (2000). Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bader G, Hogue C (2000). BIND–a data specification for storing and describing biomolecular interactions, molecular complexes and pathways. Bioinformatics 16:465–477

    Article  CAS  PubMed  Google Scholar 

  • Balsa-Canto E, Alonso AA, Banga JR (2010) An iterative identification procedure for dynamic modeling of biochemical networks. BMC Syst Biol Feb:17(4):11

    Google Scholar 

  • Barkai N, Leibler S (1997) Robustness in simple biochemical networks. Nature 387(6636):913–917.

    Article  CAS  PubMed  Google Scholar 

  • Behrmann I, Janzen C, Gerhartz C, Schmitz-Van de Leur H, Hermanns H, Heesel B, Graeve L, Horn F, Tav-ernier J, Heinrich C (1997) A single STAT recruitment module in a chimeric cytokine receptor complex is sufficient for STAT activation. J Biol Chem 272(8):5269–5274.

    Article  CAS  PubMed  Google Scholar 

  • Bhalla US, Ram PT, Iyengar R (2002) MAP kinase phosphatase as a locus of flexibility in a mitogen-activated protein kinase signaling network. Science 297(5583):1018–1023.

    Article  CAS  PubMed  Google Scholar 

  • Birkemeyer C, Luedemann A, Wagner C, Erban A, Kopka J (2005) Metabolome analysis: the potential of in vivo labeling with stable isotopes for metabolite profiling. Trends Biotechnol 2005 Jan;23(1):28–33

    CAS  Google Scholar 

  • Blüthgen N, Legewie S, Kielbasa SM, Schramme A, Tchernitsa O, Keil J, Solf A, Vingron M, Schäfer R, Herzel H, Sers C (2009) A systems biological approach suggests that transcriptional feedback regulation by dual-specificity phosphatase 6 shapes extracellular signal-related kinase activity in RAS-transformed fibroblasts. FEBS J 2009 Feb;276(4):1024–1035

    Google Scholar 

  • Bollard ME, Stanley EG, Lindon JC, Nicholson JK, Holmes E (2005) NMR-based metabonomic approaches for evaluating physiological influences on biofluid composition. NMR Biomed 18:143–162.

    Article  CAS  PubMed  Google Scholar 

  • Chaouiya C. (2007) Petri net modelling of biological networks. Brief Bioinform Jul;8(4):210–219. Epub 2007 Jul 11

    Google Scholar 

  • Ferrell JE Jr (2002). Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr Opin Cell Biol 14:140–148

    Article  CAS  PubMed  Google Scholar 

  • Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci USA 100(12):6940–6945.

    Article  CAS  PubMed  Google Scholar 

  • Gutenkunst RN, Waterfall JJ, Casey FP, Brown KS, Myers CR, Sethna JP (2007) Universally sloppy parameter sensitivities in systems biology models. PLoS Comput Biol Oct;3(10):1871–1878

    CAS  Google Scholar 

  • Hamstra DA, Bhojani MS, Griffin LB, Laxman B, Ross BD, Rehemtulla A (2006) Real-time evaluation of p53 oscillatory behavior in vivo using bioluminescent imaging. Cancer Res 2006 Aug 66(15):7482–7489

    CAS  Google Scholar 

  • Heyman (2006) Quantification of activated signal transduction proteins using fast activated cell-based ELISAs (FACETM). Nature Application Notes. doi:10.1038/an1562

    Google Scholar 

  • Hoffmann R, Valencia A (2005) Implementing the iHOP concept for navigation of biomedical literature. Bioinformatics 21 Suppl 2:ii252–258

    CAS  PubMed  Google Scholar 

  • Jelkmann (2004) Molecular biology of erythropoietin. Intern Med 43(8):649–659.

    Article  CAS  PubMed  Google Scholar 

  • Jelkmann W, Bohlius J, Hallek M, Sytkowski AJ (2008) The erythropoietin receptor in normal and cancer tissues. Crit Rev Oncol Hematol 2008 Jul;67(1):39–61. Epub 2008 Apr 23

    Google Scholar 

  • Jordan JD, Landau EM, Iyengar R (2000). Signaling networks: the origins of cellular multitasking. Cell 103(2):193–200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kholodenko BN (2006) Cell-signalling dynamics in time and space. Nat Rev Mol Cell Biol 7(3):165–176

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim D, Rath O, Kolch W, Cho KH (2007) A hidden oncogenic positive feedback loop caused by crosstalk between Wnt and ERK pathways. Oncogene 26(31):4571–4579

    Article  CAS  PubMed  Google Scholar 

  • Kim SY, Ferrell JE Jr (2007) Substrate competition as a source of ultrasensitivity in the inactivation of Wee1. Cell 128(6):1133–1145.

    Article  CAS  PubMed  Google Scholar 

  • Kisseleva T, Bhattacharya S, Braunstein J, Schindler CW (2002) Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene 285:1–24

    Article  CAS  PubMed  Google Scholar 

  • Kitano H (2003) Cancer robustness: tumour tactics. Nature 426:125

    Article  CAS  PubMed  Google Scholar 

  • Kitano H (2007) Towards a theory of biological robustness. Mol Syst Biol 3:137

    Article  PubMed Central  PubMed  Google Scholar 

  • Kito K, Ito T (2008) Mass spectrometry-based approaches toward absolute quantitative proteomics. Curr Genomics 9(4):263–274

    Article  CAS  PubMed  Google Scholar 

  • Klamt S, Saez-Rodriguez J, Lindquist JA, Simeoni L, Gilles ED (2006) A methodology for the structural and functional analysis of signaling and regulatory networks. BMC Bioinformatics 7:56

    Article  PubMed Central  PubMed  Google Scholar 

  • Klemm JD, Schreiber SL and Crabtree GR (1998) Dimerisation as a regulatory mechanism in signal transduction. Annu Rev Immunol 16:569–592

    Article  CAS  PubMed  Google Scholar 

  • Lai X, Nikolov S, Wolkenhauer O, Vera J (2009) A multi-level model accounting for the effects of JAK2-STAT5 signal modulation in Erythropoiesis. Comput Biol Chem. doi:10.1016/j.compbiolchem.2009.07.003

    Google Scholar 

  • Lévi F, Altinok A, Clairambault J, Goldbeter A (2008) Implications of circadian clocks for the rhythmic delivery of cancer therapeutics. Philos Transact A Math Phys Eng Sci 366(1880): 3575–3598

    Article  Google Scholar 

  • Lewis RS, Ward AC (2008). Stat5 as a diagnostic marker for leukemia. Expert Rev Mol Diagn 8(1):73–82

    Article  CAS  PubMed  Google Scholar 

  • Mullassery D, Horton CA, Wood CD, White MR (2008). Single live-cell imaging for systems biology. Essays Biochem 45:121–33. Review

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nikolov S, Lai X, Liebal UW, Wolkenhauer O, Vera J (2010) Integration of sensitivity and bifurcation analysis to detect critical processes in a model combining signalling and cell population dynamics. Int J Syst Sci, 41(1): 81–105

    Google Scholar 

  • Nikolov S, Lai X, Wolkenhauer O, Vera J (2009) Time delay and Epo dose modulation in a multilevel model for erythropoiesis. Int Electron J Bioautomation (IEJB) 12: 53–69

    Google Scholar 

  • Papin JA, Hunter T, Palsson BO, Subramaniam S (2005) Reconstruction of cellular signalling networks and analysis of their properties. Nat Rev Mol Cell Biol 6(2):99–111

    Article  CAS  PubMed  Google Scholar 

  • Peri S, Navarro JD, et al. (2003) Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res 13:2363–2371

    Article  CAS  PubMed  Google Scholar 

  • Rautio J, Barken KB, Lahdenperä J, Breitenstein A, Molin S, Neubauer P (2003) Sandwich hybridisation assay for quantitative detection of yeast RNAs in crude cell lysates. Microb Cell Fact 28;2(1):4

    Article  Google Scholar 

  • Reynolds AR, Tischer C, Verveer PJ, Rocks O, Bastiaens PI (2003) EGFR activation coupled to inhibition of tyrosine phosphatases causes lateral signal propagation. Nat Cell Biol. 2003 May;5(5):447–53

    Google Scholar 

  • Ribba B, Colin T, Schnell S. (2006) A multiscale mathematical model of cancer, and its use in analyzing irradiation therapies. Theor Biol Med Model 3:7

    Article  PubMed Central  PubMed  Google Scholar 

  • Roth CM (2002) Quantifying gene expression. Curr Issues Mol Biol 4(3):93–100

    CAS  PubMed  Google Scholar 

  • Saez-Rodriguez J, Simeoni L, Lindquist JA, Hemenway R, Bommhardt U, Arndt B, Haus UU, Weismantel R, Gilles ED, Klamt S, Schraven B (2007) A logical model provides insights into T cell receptor signaling. PLoS Comput Biol 3(8):e163

    Article  PubMed Central  PubMed  Google Scholar 

  • Sahin O, Löbke C, Korf U, Appelhans H, Sültmann H, Poustka A, Wiemann S, Arlt D (2007) Combinatorial RNAi for quantitative protein network analysis. Proc Natl Acad Sci USA 104(16):6579–6584

    Article  CAS  PubMed  Google Scholar 

  • Saltelli A, Tarantola S, Campolongo F, Ratto M (2004). Sensitivity analysis in practice: a guide to assessing scientific models. Wiley, New York

    Google Scholar 

  • Schauer N, Steinhauser D, Strelkov S et al (2005) GC-MS libraries for the rapid identification of metabolites in complex biological samples. FEBS Lett 579:1332–1337

    Article  CAS  PubMed  Google Scholar 

  • Schefe JH, Lehmann KE, Buschmann IR, Unger T, Funke-Kaiser H (2006) Quantitative real-time RT-PCR data analysis: current concepts and the novel “gene expression’s CT difference” formula. J Mol Med 84(11):901–910

    Article  CAS  PubMed  Google Scholar 

  • Schilling M, Maiwald T, Bohl S, Kollmann M, Kreutz C, Timmer J, and Klingmüller U (2005). Computational processing and error reduction strategies for standardized quantitative data in biological networks. FEBS J 272:6400–6411

    Article  CAS  PubMed  Google Scholar 

  • Shin SY, Rath O, Choo SM, Fee F, McFerran B, Kolch W, Cho KH (2009) Positive- and negative-feedback regulations coordinate the dynamic behavior of the Ras-Raf-MEK-ERK signal transduction pathway. J Cell Sci Feb 1;122(Pt 3):425–35

    Google Scholar 

  • Turner TE, Schnell S, Burrage K (2004) Stochastic approaches for modelling in vivo reactions. Comput Biol Chem 28(3):165–178

    Article  CAS  PubMed  Google Scholar 

  • van Leeuwen IM, Mirams GR, Walter A, Fletcher A, Murray P, Osborne J, Varma S, Young SJ, Cooper J, Doyle B, Pitt-Francis J, Momtahan L, Pathmanathan P, Whiteley JP, Chapman SJ, Gavaghan DJ, Jensen OE, King JR, Maini PK, Waters SL, Byrne HM (2009) An integrative computational model for intestinal tissue renewal. Cell Prolif Oct;42(5):617–36. Epub 2009 Jul 20

    Google Scholar 

  • Vera J, de Atauri P, Cascante M, Torres NV(2003) Multicriteria optimization of biochemical systems by linear programming: application to production of ethanol by Saccharomyces cerevisiae. Biotechnol Bioeng. 83(3):335–343.

    Article  CAS  PubMed  Google Scholar 

  • Vera J, Bachmann J, Pfeifer AC, Becker V, Hormiga J, Torres Darias NV, Timmer J, Klingmuller U, Wolkenhauer O (2008a) A systems biology approach to analyse amplification in the JAK2-STAT5 signalling pathway. BMC Syst Biol 2:38

    Article  PubMed Central  PubMed  Google Scholar 

  • Vera J, Balsa-Canto E, Wellstead P, Banga JR, Wolkenhauer O (2007a) Power-law models of signal transduction pathways. Cell Signal 19:1531–1541.

    Article  CAS  PubMed  Google Scholar 

  • Vera J, Curto R, Cascante M, Torres NV (2007b) Detection of potential enzyme targets by metabolic modelling and optimization. Application to a simple enzymopathy. Bioinformatics 23(17):2281–2289

    Article  CAS  PubMed  Google Scholar 

  • Vera J, Kwon T, Schmitz U, Kolch W, Wolkenhauer O (2009).Exploration of homodimer receptor – homodimer protein interactions. Int J Bioinform Res Appl 5(4):447–457

    Article  CAS  PubMed  Google Scholar 

  • Vera J, Millat T, Kolch W, Wolkenhauer O (2008b) Dynamics of receptor and protein transducer homodimerization. BMC Syst Biol 2:92.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wilhelm BT, Landry JR (2009) RNA-Seq-quantitative measurement of expression through massively parallel RNA-sequencing. Methods. doi:10.1016/j.ymeth.2009.03.016

    Google Scholar 

  • Wolkenhauer O (2007). Defining Systems biology: an engineering perspective. IET Syst Biol 1(4):1–4

    Article  Google Scholar 

  • Wolkenhauer O, Ullah M, Wellstead P, Cho KH (2005) The dynamic systems. FEBS Lett 2005 Mar 21; 579(8):1846–53

    Google Scholar 

  • Xiayan L, Legido-Quigley C (2008) Advances in separation science applied to metabonomics. Electrophoresis 29(18):3724–3736

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The work of J.V. was supported by the FORSYS initiative of the German Ministry of Science (BMBF) as a part of the CALSYS project (http://www.sbi.uni-rostock.de/calsys). O.W. acknowledges support from the ExCell project at the Center for Logic, Philosophy and History of Science, University of Rostock, funded by the regional government of Mecklenburg-Vorpommern, Ministry for Education, Science and Culture (Project Nr. 62327030). S.N. is funded by DAAD-Bulgarian National Science Fund project DO02-23/05.3.2009

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Vera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Vera, J., Nikolov, S., Wolkenhauer, O. (2010). Strategies to Investigate Signal Transduction Pathways with Mathematical Modelling. In: Choi, S. (eds) Systems Biology for Signaling Networks. Systems Biology. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-5797-9_8

Download citation

Publish with us

Policies and ethics